
-P-
* r 'ILE COPY

Contract No. DAAL03-87-K-0090
June 1, 1987 - November 30, 1988

PHOENIX, A HIGH-PERFORMANCE UNIX WITH AN EMPHASIS ON
DYNAMIC MODIFICATION, REAL-TIME RESPONSE AND SURVIVABILITY

Submitted to:

U.S. Army Research Office
P.O. Box 12211

4300 S. Miami Boulevard
Research Triangle Park, NC 27709-2211

Submitted by:

R. P. Cook

N Associate Professor

00
N

N DT1C
Q/ELECTE

FEB 21198
Report No. UVA/525186/CS89/101 U

December 1988 cH

SCHOOL OF ENGINEERING AND

APPLIED SCIENCE
~STBIBT~nN ST ATM'A

Approvocl foT public rVe0sa3
_..:b~orti Unlhimited

_ - ------- .. DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF VIRGINIA

CHARLOTTESVILLE, VIRGINIA 22901

89 2 16 028

SEuJrYALASS51FATIONOF THIM AGE ,,

REPORT DOCUMENTATION PAGE
Ia. REPOR"SECURITY CLASSIFICATION ib. RESTRICTIVE MARKINGS

Unclas sified . None
2a. SECURITY CLASSIFICATION AUTHORITY j DISTRIBUTION /AiAILA8ILITY OF. KEF.ur

Approved for public release;
2b. OECLASSIFICATIONIDOWNGRADING SCHEDULE distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBERtS)

UVA/525186/CS89/101 /A ea p7,7.3 /-E4

6a. NAME OF PERFORMING ORGANIZATION i 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

University of Virginia (If applicable) Office of Naval Research Resident

Dept. of Computer Science Representative

6C. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City State, and ZIP Code)
Thornton Hall 818 Connecticut Ave., N. W.

Charlottesville, VA 22901 Eighth Floor
Washington, DC 20006

8.. NAME OF FUNDING ISPONSORINGo A 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION j (if applicable DAALO38 7-K-090
U.S. Army Research Office

8C. ADDRESS (Ciry, State, and ZIP Code) 110. SOURCE OF FUNDING NUMBERS
P.O. Box 12211 IPROGRAM PROJECT TASK WORK UNIT
4300 S. Miami Boulevard ELEMENT NO. NO. NO. ACCESSION NO.

Research Triangle Park, NC 27709-2211
11. TITLE (Include Security Classification)

PHOENIX, A High-Performance UNIX With An Emphasis On Dynamic Modification, Real-Time

Response And Survivability

12 PERSONAL AUTHOR(S)
R. P. Cook

13a. TYPE OF REPORT j13b. TIME COVERED _14. DAT 0FREPORT (yearonth,oay) 115. PAGE eUNT

- ?%&knlG. A I FROM 6/1/87 TO11/30/8i I988 Decem erz I EUN
16. SUPPLEMENTARY NOTATION The view, opinions, and/or findings contained in this report are those

of the author and should not be construed as an official department of the Army position,

policy, or decision, unless so designated by other documentation.

I,. .OSATI CODES " 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD I GROUP SUB-GROUP

'1l9. AaSTRACT (Cofdtinue on revere of necessary and identify by block number)

The g oal of the Phoenix research projectUwhich is a three year efforn)Ls to develop a high-
performance operating system for embedded applications that have a real-time response requirement The
system is to be extremely modular so that it can be easily adapted to meet different performance goals or
application restrictions. Phoenix will also support a UNIX-like system call interface for compatibility with
government standards. There are currently no UNIX operating systems capable of meeting 'hard" real-
time requirements; Aere are currently no UNIX operating systems that can be easily adapted to meet
application requirements.

We will also investigate the problems associated with modifying an operating system and application
programs remotely without halting the system. For real-time systems, the modifications must be performed
in such a way that the unavailability of the system, or particular modules, is minimized.

Another aspect of the project is the analysis of operating system construction techniques that minim-
ize the unavailability of the system when a power failure or hardware malfunction occurs and that maxim-
ize the ability of a system to Opick u" where it left off. Other areas of investigation include operating sys-
tem structuring techniques, better algorithms, and better system interfaces. . ,

20 OIrTRIiUTIONIAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

C3UNCLASSIFIED/UNLIMITED 0 SAME AS RPT 0 DTIC USERS I Unclassl ied

22a PJAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) I22c. OFIICE 5YMBOL

Dr. David W. Hislop I I
DD FORM 1473,84 MAR d3 APR edition may oe used until exnausteo. SECURITY CLASSIFICATION OF THIS PAGE

All other editions are oosolete UNCLASSIFIED

Contract No. DAAL03-87-K-0090
June 1, 1987 - November 30, 1988

PHOENIX, A HIGH-PERFORMANCE UNIX WITH AN EMPHASIS ON
DYNAMIC MODIFICATION, REAL-TIME RESPONSE AND SURVIVABILITY

Submitted to:

U.S. Army Research Office
P.O. Box 12211

4300 S. Miami Boulevard
Research Triangle Park, NC 27709-2211

Submitted by:

R. P. Cook
Associate Professor

Department of Computer Science

SCHOOL OF ENGINEERING AND APPLIED SCIENCE

UNIVERSITY OF VIRGINIA

CHARLOTTESVILLE, VIRGINIA

Report No. UVA/525186/CS89/1O1 Copy No. I 7
December 1988

THE VIEW OPINIONS, AND/OR FINDINGS CONTAINED IN THIS
REPORT AkE THOSE OF THE AUTHOR AND SHOULD NOT BE
CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSI-
TION, POLICY, OR DECISION, UNLESS SO DESIGNATED BY
OTHER DOCUMENTATION.

TABLE OF CONTENTS

List of Appendices 2

Statement of The Problem 3

Summary of Results 3

List of AU Publications and Reports 4

List of All Participating Personnel 5

Appendices 6

Accession For

NTIS GRA&I
DTIC TAB 0

Unannounced [-
Just Iis-'tion

By-

Availabi1itY Codes

jAvail and/or
Dist

F 1st
Special

LIST OF APPENDICES

Appendix I, Minimizing Interrupt Latency 6

Appendix II, Sample File System Designs 12

Appendix IT, A Software Prototyping Environment 29

Appendix IV, An Introduction to Modula-2 49

0 Appendix V, An Introduction to Modular Programming 62

-2

THE PHOENIX PROJECT

Statement of The Problem

The goal of the Phoenix research project, which is a three year effort, is to develop a high-
performance operating system for embedded applications that have a real-time response requirement. The
system is to be extremely modular so that it can be easily adapted to meet different performance goals or
application restrictions. Phoenix will also support a UNIX-like system call interface for compatibility with
government standards. There are currently no UNIX operating systems capable of meeting "hard" real-
time requirements. There are currently no UNIX operating systems that can be easily adapted to meet
application requirements.

We will also investigate the problems associated with modifying an operating system and application
programs remotely without halting the system. For real-time systems, the modifications must be performed
in such a way that the unavailability of the system, or particular modules, is minimized.

Another aspect of the project is the analysis of operating system construction techniques that minim-
ize the unavailability of the system when a power failure or hardware malfunction occurs and that maxim-
ize the ability of a system to "pick up" where it left off. Other areas of investigation include operating sys-
tem structuring techniques, better algorithms, and better system interfaces.

* Summary of Results

In the first year of the Phoenix research project. we have some notable accomplishments. First, the
operating system is operational, although not all of the SVID system calls are implemented yet. The code
is non-proprietary so that the operating system can be used by anyone. Also, the system has a number of
unique features.

* First, the implementation is layered and modular. Thus, portions of the code that are not applicable
for a given embedded environment can be omitted. The system is also "open", which means that the low-
level operating system interfaces are available to the application programmer, if desired. Thus, it is possi-
ble to add requests to a disk's device queue without going through the operating system. This kind of ope-
ness is an absolute requirement for certain real-time applications, but need not be used otherwise.

A second feature is the system's object-based implementation. Each process is represented as a
0 record of dynamic size whose fields can not only be added and deleted dynamically but also whose field

types can change dynamically. It took quite a bit of experimentation to derive a mechanism that had the
desired flexibility while remaining cost-effective in execution time. The operating system was actually
rewritten three times to experiment with different ideas. The object-based approach means that one part of
the system can be easily changed without affecting other parts. This information-hiding property is essen-
tial for a system that is intended to be easily adapted to meet different system requirements.

* In a traditional UNIX implementation, only one kernel process may execute at a time. In Phoenix,
this restriction is eliminated; thus, the execution of a low-priority task in the kernel cannot delay the execu-
tion of a high-priority task. Furthermore, a good bit of effort was invested in minimizing lock granularity.
As a result, processes accessing disjoint kernel resources will execute in parallel and will be non-
interfering. A non-interference guarantee is important because it allows a real-time programmer to execute
a task as a test case and then to be assured that in a production version of we system that it will complete in

0 the same period of time, assuming that the resources that it accesses are disjoint from those used by other
tasks.

In order to take advantage of the performance opportunities afforded by parallelism, two versions of
the operating system were created, one for a rditional uniprocessor machine model and another for a mul-
tiprocessor machine model. Thus, Phoenix can adapt to new technology as well as new application
requirements.

0 In a real-time system, one of the important performance criteria is the maximum interrupt latency
time. This is determined by the worst-case disabled section of code in the system. In a traditional UNIX

-3-

implemenaton, disabling interrupts to implement critical sections is a standard practice that results in poor
real-time performance. In Phoenix, the use of the DISABLE operator is limited to only two modules. The
maximum in errupt latency time is bounded by the execution time of the following sequence: 1) enter
READY queue; 2) remove head of READY queue; 3) perform a coroutine transfer. As a side-effect of our
effort tominimize this important parameter, we also discovered a new kernel design that avoids many con-
text switches in a multiprocessor system.

Another aspect of high-performance, real-time systems is avoiding the convoy phenomenon associ-
ated with high-traffic critical sections. We have developed an intention-based locking strategy that can
ameliorate this problem.

Another feature of the Phoenix implementation is its flexible treatment of file systems. For example,
it is possible to have a file system without having file names. For a real-time, embedded application, ten
files might be sufficient so why should the user pay the overhead associated with directories. Similarly, a
file system can be restricted to extents so that the use of index blocks can be eliminated. As the Phoenix
project continues, we will be developing a !ibrary of such off-the-shelf components so that the application
programmer can mix-and-match to solve their problems. We have also implemented files as objects to
make it easy for applications programmers to meet special-purpose requirements.

As a final point, the most important feature of Phoenix is that it is implemented totally in a host
environment using the StarLite prototyping system. The environment is portable (written in C). As a
result, the operating system can be hand-tailored in a pleasant and efficient manner before attempting a
conversion to a bare-machine testbed. The environment can also be used to support benchmarking and
program development. For example, we can time a segment of a real-time task down to the number of
instructions that it executes. This also allows us to make quantitative measurements when comparing
operating system algorithms for efficiency. Finally, the environment allows us to easily share our research
results with any other group without requiring them to purchase hardware identical to our own.

List of All Publications and Reports
(submitted) The StarLite Prototyping Architecture to the Third Inter-

national Conference on Archiitectural Support for Program-
ming Languages and Operating Systems.

(submitted) StarLite, A Software Prototyping Environment to IEEE
Computer.

(in preparation) Minimizing Interrupt Latency Time in the Phoenix
Operating System.

(report) An Introduction to Modula-2.

(report) An Introduction to Modular Programming.

List of All Participating Personnel

Veena Bansal, Ph.D. student

Richard Crowe, M.E., December 1987
Chris Koeritz, M.S. student

Richard McDaniel, B.S. student

Prasad Wagle, M.S. student

Jenona Whitlach, M.S., December 1987

-4-

Nancy Yeager, M.E., June 1988

0

0

S

* APPENDIXI

MINIMIZING INTERRUPT LATENCY TIME

0

0

0

0

0

-6-
0

Minimizing Interrupt Latency Time
in

The Phoenix Operating System

Robert P. Cook*
Department of Computer Science

University of Virginia
Charlottesville, VA 22903

1.0 Introduction the kernel is constructed. The bound is then
* ~invariant across aUl application programs.

The Phoenix project represents an attempt to

improve the technology associated with operat- There are some assumptions. First, we assume
ing system ccnstruction. All software is tested that priority-ordering is desirable. Second, only
using the StarLite[l prototyping environment, disable/enable, low-level control is assumed.
which supports operating system development at Third, device synchronous operations are not
the host level. That is. the Phoenix operating allowed; that is, a user cannot disable interrupts
system executes on a virtual machine supported to manipulate a device's control registers. Fi-
by an interpreter. The benefit is that new designs nally, we assume a single processor, although the
can be tested without resorting to the bare ma- technique is also valid for multiprocessors.
chine mode of development that is commonly Before explaining the idea, we point out that
used. minimizing the time from the occurrence of an

In this paper, we present the solutions to two interrupt to the initiation of its handler is not the
problems that were solved as part of a recent same as minimizing the handler's completion or
redesign of the Phoenix kernel. The first problem response time, which is a function of the availa-
was to minimize the kernel's interrupt latency, bility of resources, such as locks, and the com-
which is the time taken from the generation of an plexity of the handler's algorithm. The major
interrupt to the beginning of execution by its impediment to minimizing interrupt latency time
handler. The second problem, which will be ex- is the indiscriminate use of disable/enable to pro-
plained in a later section, relates to "race" condi- tect critical sections. (Brinch Hansen has named
tions associated with process queuing. such a critical section a monolithic monitor.)

We restrict the use of disable/enable to critical
2.0 Minimizing Interrupt Latency sections associated with process synchronization

We believe that the Phoenix kernel design is operations. In Phoenix, these critical sections are
optimal with respect to minimizing in upt isolated in two kernel modules, Atomic and Run.
latency times. Furthermore, the worst case time Since disable/enable only occur in the kernel,
isboundedbyaconstantthatcanbederivedwhen the kernel can be analyzed to determine the

disable time of its longest critical sections. This
*This work is supported by ARO under contract time indicates the upper bound on the latency of
DAAL03-87-K0090 and by ONR under contract external interrupts both within the kernel and for
N00014-86-K0245. any user program.

-7-0

The Atomic module implements a general semaphores, condition variables, monitors, and
semaphore type that can be used for critical sec- other synchronization abstractions, none of
tions, resource counters, or as private sema- which use disable/enable. The implementations
phores. When an Atomic semaphore is used to of P and V are straightforward except for their
protect a critical section, the execution time interactions with the Run module. Figure 2 lists
within the critical section must be "short". As a the code for Atomic.P.
result, the execution time of the entry/exit code
must be minimized. Therefore, processes wait- PROCEDURE P(VAR s:Senaphore);
ing to enter a "short" critical section are queued VAR b:BOOLEAN;
in FIFO r-, her than priority order. Figure 1 lists pp:Run.pProcess;
the interface specification for Atomic and illus- BEGIN
trates its use to implement a critical section. b := Traps.DISABLE); (* save old state)
Notice that Atomic uses the Run module in its DEC(s.count);

IF s.count < 0 THEN (* block caller
implementation. pp := Run.SelfO;

The P and V procedures have the "standard" Run.SetToStop(ppA, s.q);
PLinks.AddBefore(s.q.iail, ppA.link); (* FIFO)

interpretation. The Test procedure is used to Run.SetStop(ppA);
determine the current state (count value) of a END; (* IF ')
semaphore variable. Traps.RESTORE(b); (* restore old state)

DEFINITION MODULE Atomic; EDP
IMPORT Run; Figure 2. The P Operation

TYPE Semaphore = RECORD
count: INTEGER; The P operation decrements the semaphore's
q : Run.ProcessQueue; count. If it becomes negative, the calling process

END; (* Semaphore *) is blocked on the semaphore's queue. The PLinks
module exports a doubly-linked list type as well

count:CARDINAL) ; as delete and insert operators. PLinks does not

(count=O - Private Semaphore a) protect its critical sections; thus, it depends on its
(a count=1 - Critical Section *) caller to maintain the integrity of an operation.
(a count=N -Resource Counter *) In the case of Atomic, the P operation is indivis-

PROCEDURE P(VAR s:Semaphore); ible (i.e. disabled); therefore, the call to PLinks is
PROCEDURE V(VAR s:Semaphore); IER- indivisible. The interaction with the Run module,
PROCEDURE Test(VAR s:Semaphore):INTEG which is described in the next section, is the most

END Atomic.
interesting part of the implementation.

VAR s : Atomic.Semaphore; 3.0 The Queuing Problem
Atomic.IniSemaphore(s, 1); The queuing problem occurs when a process

P(s); Disabled decides to block in a queue (as in Figure 2) at any
(* critical-section') Enabled level of the system. The code sequence usually
V(s); Disabled has the attributes listed in Figure 3.

Figure 1. The Atomic Module First, the calling process must obtain the lock
that serializes queue operations. Next, the block-

Atomic semaphores are used in other modules ing criteria is tested (e.g. "count<0" for P). If the
in the operating system to implement non-atomic

-8-

process must wait for the invariant to become
true, the lock must be released and the process A second solution can be obtained by imple-
blocked. menting a primitive that combines steps four and

five into a single indivisible operation. On theThe queuing problem results because sessurface, this might appear to be the same as the
three and four are not indivisible. That is, an srae hsmgtapa ob h aea h
itre can oure t indivitesibl e. stats, previous solution. However, Step four in Figure
interrupt can result in the test of a queue's status, 4 can be an arbitrary code sequence. In a software

which then causes the delayed process to be un-

blocked. However, there is a race condition system implemented as a module hierarchy, each

block in s level is free to define its own lock abstraction. If
four and the interrupt routine attempting to wake the release-lock and block operations are com-

fourandtheintrrut rutin atempingto akebined at a low level, then either every software
it. Obviously, the process must enter the queue layer as to ue the eing mechsor
before it can be removed. layer has to use the same locking mechanism or

the lowest layer has to know about every higher-

1. Get Lock. layer lock type. The former is overly restrictive
2. Ten Blocking Criteria, Update Process Status. while the latter violates modular programming
3. Release Lock.
4. Process Blocks in Queue. principles.

Results in a context switch to another process. We have experimented with several other
solutions that were even more unsatisfactory and

Figure 3. A Typical Delay Sequence will not be presented here. The current implem-
entation of the Run module, which is presented

The traditional implementation of this code next, represents our best solution to date.
sequence, which is listed in Figure 4, solves the 3.1 The Run Module's Solution
race condition by making steps three and four in-
divisible. Disabling interrupts is used to protect The Run module implements a solution to the
the critical section. The benefit of disabling inter- queuing problem that is based on a variation of
rupts toeffect the locking is that when the context intention-mode locking[2]. Before releasing the
switch to the next ready process occurs, the lock lock in Step 3 of Figure 3, a process records its
is effectively released. Each process has its dis- intention to block itself. At this point, the "block"
able/enable status encoded in its state vector; operation is separated into three steps (1) linking
thus, a context switch from a disabled to an the process in a delay queue, (2) releasing the
enabled process releases, or opens, the critical lock, and (3) actually stopping. The steps are
section. The traditional solution has the disad- listed in Figure 5, which you may recognize as an
vantage that steps three to five can involve arbi- elaboration of the P implementation in Figure 2.
trary delays, which is inconsistent with the goal I. Get Lock.
of minimizing interrupt latency. 2. Test Blocking Criteria. Update Process Status.
I. Get Lock. 2a. pp:= Run.Self0; (* Obtain my "tag" *)
1. Get Lckiu. 2b. Run.SetToStop(ppA , queue); (* Intention2. Test Blocking Criteria, Update Process Status. 3. Process Is Linked into the Queue.
3. b: Traps.DISAB LEO; 3a. Release Lock.
4. Release Lock. 3. Relese (al.
5. Process Blocks in Queue. 3b. Run.SetStop(pp); c Process actually stops)

Context switch can enable interrupts. Results in a context switch to another process.
6. Traps.RESTORENb);

Figure 4. The Traditional Solution Figure 5. Intention-Based Solution

-9-

0

In order to derive a solution that is correct, we reflects the legal transitions.
must examine all possible interleavings of the The first case, ABCD, represents the sequen-
block/unblock process sequence. Furthermore, tial execution of the two code sequences that

0 the Run module's procedures are critical sectionsth rnpe ole rocessre ae rifoalction comprise the critical section. As a result, there is
with respect to the process' state informatilon; n nefrneadn osblt ferr
thus, the disable time of their implementations no interference and no possibility of error.
must be accounted for to determine the bound on In the next two cases, ACBD and ACDB, a
latency time. To facilitate the analysis, Figure 6 process executes ToStop and then an interrupt
lists the block/unblock code sequences. Notice occurs. The interrupt routine, which must be of
that a process typically blocks itself but must be higher priority than the running process to be
unblocked by another process. We assume that, executed at all, then initiates the ToRun action.
as was the case in Figure 5, locks protect the in- In the DB case, the interrupt routine continues
divisibility of the first two steps in each opera- with SetRunning, returns from the interrupt, and
tion. the original process executes the SetStop call. At

Block Process (A, B) this point, the appropriate action is not to stop at

1. Get Lock. all, just continue execution.
2. Test Blocking Criteria. Update Status. For the ACBD case, the ToRun occurs before
2a. pp:= Run.Selfo; (0 Obtain my "tag") the SetStop. There are two choices. First, we

9 2b. Run.SetToSop(ppA. queue); (* Intention A) A could record the anticipation of the SetRunning
3. Process Is Linked into the Queue. and then let the process continue execution after
3a. Release Lock. the SetStop. Secondly, the process could be

3b. Run.SetStop(ppA); (* Process stops) B blocked until the SetRunning occurred. The first
solution, which we adopted, avoids extracontext

UnBlock Process (C, D) switches. The correctness of the implementation
can be guaranteed by allowing only legal state

I. Get Lock. transitions as illustrated by the diagram in Figure
2. Test Wakeup Criteria, Update Process Status. 7 on the next page.
2a. Process Is UnLinked from the Queue.
2b. Run.SetToRun(ppA, queue); (* Intention 5) C In the diagram, the dashed rectantages indi-
3. Release Lock. cate a process in the "runnable" state. Such a

process may, or may not, be assigned to a physi-
4. Run.SetRunning(pp'); (0 Process starts *) D cal processor. The solid rectangles indicate states

in which a process may not be assigned to a

Figure 6. Block/UnBlock Process processor. The legal state transitions are labeled
with the procedure names that are exported by the

The actions associated with steps A and C are Run module. Notice that a process that is the

indivisible subject to the integrity of the lock objectof the ToStop-ToRun-Running-S top tran-
sition path remains "Runnable". In the multi-

usage. Steps B and D are indivisible because the svion t rmi Pnaen temlti-
Runmoduleisimplementedusingdisable/enable processor version of the Phoenix kernel, the
for its critical sections. Therefore, the possible process would continue to execute.
interleavingsare ABCD, ACBD, andACDB. We 3.2 The Solution's Benefits
will examine each possibility in turn to produce
a state-machine implementation that correctly The Run module's longest critical section

1

- 10 -

performs two operations: (1) add a process to a time.

priority queue and (2) perform a context switch Using these abstractions, we have built a
to the process at the head of the "Runnable"*0 queue. There are a number of well-known tech- UJNIX kernel that is optimized for real-time re-
quee. fore mranmbher o eratinon andh- sponse in both the uni- and multi-processor
niques for minimizing the insert operation and environments. For example, there is a Sema-
the context-switch time is machine-dependent. phore module, but it uses Atomic locks to protect
Thus, the disable time is minimal, which mini- its priority queues. Thus, while priority queue
mizes the worst-case latency time. The two- insertion in the Run module is disabled, the

* p hase so lu tio n to the q ueuin g pro blem sup po rts i sertio n eue op erRun o nsd ule ail o ih erlm od ules

modular programming and eliminates the need priority queue operations in all other modules

for disabled code in any other system modules execute with interrupts enabled.

(given our assumptions). The Phoenix brand of UNIX is an "open"
operating system; that is, in addition to the stan-

4.0 Summary dard UNIX system calls, any process can take

Only two modules, Atomic and Run, in our advantage of the capabilities of any module used
kernel contain disabled code sequences. Any dis- in the kernel's implementation.
abled code necessitated by device synchronous References
operations must be accounted for separately. The

Create Run A [1] Cook, R.P., StarLite, A Visual Simulation
Package for Software Prototyping, Second

Run Stop ACM SIGSOFT/SIGPLAN Symposium
on Practical Software Development En-

L-- J - vironments, (Dec. 1986) 102-110, also

oRUDA ToStop V ToStop V SIGPLAN Notices 22, 1(Jan. 1987).
[2) Gray, J.N., Notes on Database Operating

< StpoSystems, in Operating Systems--An Ad.
L .L vanced Course (Bayer, Graham,

ToRunV StopA RunA Seegmuller eds.), Springer-Verlag 1979.

Stop >

Figure 7. The Run State Diagram

longest disabled sequence in the kernel is con-
tained in the V operation, which removes the

* process at the head of a semaphore queue and
then calls Run for the insert and switch opera-
tions. For a given architecture and implementa-
tion, the execution time for these operations
provides the upper bound on interrupt response

- 11 -

@

APPENDIX 1I

SAMPLE FILE SYSTEM DESIGNS BY STUDENTS

- 12 -

,S

1. INTRODUCTION

This paper discusses the design of a fault-tolerant file system which uses a stable storage abstraction

in order to achieve its fault tolerance. The layout of the disk is discussed first. Next.- a discussion of error

modes and assumptions follows. Then, a discussion of an on-line recovery mechanism that allows the sys-

tern to be utilized while recovery proceeds is discussed. From this discussion, the maximum wme to

recover from the most catastrophic failure is presented.

2. WELL KNOWN OBJECT DESCRIPTORS

All objects in this file system will be implemented as files and thus each will have an object descrip-

tor. This includes volume descriptors, directories, free lists, and object descriptors. Since object descrip-

tors are to have object descriptors which in turn require object descriptors, and so on, it has been decided

that the descriptors for descriptors will be implemented as a set of "well known" object descriptors which

ae provided to the system upon mounting a volume or upon bootup. These well known descriptors are to

be kept in memory and stored either on a separate device or highly redundantly on the same device. Thus,

they should always be available to the system.

3. BUDDY CYLINDERS

Stable storage copies will be placed on what will be referred to from here on out as a "buddy"

cylinder. There are several design choices. If there are an even number of cylinders, we may pair

cylinders n and n+l for n in (1. 3, 5, 7, 9,...). Thus, for example, cylinders one and two would be buddies,

cylinders three and four would be buddies, and so on. If there are an odd number of cylinders, the last one

would have no buddy in this scheme. We could buddy it with the next to the last cylinder adding to its

share of the burden as well as requiring special handling for the last three cylinders. We could buddy up n

with n+l for n in [1, 2, 3, ...) with the last cylinder wrapping around to the first. This severely penalizes

- 13 -

the last cylinder in case of a failure. The goal is to have all buddies in close proximity, and the last cylinder

must make a maximum seek to recover. A further problem with both of these schemes is what happens

when an entire cylinder is lost? Someone loses his buddy! How do we give this cylinder a new, nearby

buddy without complicating things?

To resolve these problems, we adopt the solution of cylinder groups. We don't pair the cylinders,

but group them by threes or fours. Thus, we do not have the problem of what to do with the last cylinder,

and many consecutive cylinders would need to be lost before we would need to regroup the cylinders.

Thus, the longest seek would be three or four cylinders to recover. This is not much more of a penalty than

the one required for most cylinders in the above designs. Thus, stable storage pairs in the same cylinder

group will be called buddies. The location of the buddy pairs of an object are stored in the inodes for that

object.

4. VOLUME DESCRIPTOR

S

There will be two copies of the volume descriptor which will be updated in stable storage fashion.

The volume descriptors will be implemented as files. The two copies will be placed on different buddy

cylinders and on different surfaces. This assures that both a cylinder and a surface may be lost while still

allowing the volume descriptor to be recovered.

Having a copy of the volume descriptor on each cylinder in a known location was rejected for

several reasons. First, there would be much wasted space. Second, the time required to update and vali-

date all copies of the volume descriptor would be large. Lastly, blocks go bad dynamically. There is a

placement problem if a new copy of the volume descriptor needs created (i.e. only one of the original has

managed to survive). Where should this new copy be placed so that it can be easily found?

S. FREE LIST

S14

The fMe ist Serves two purposes. First, as its name implies, it is the free lisL It will also be used as

a label block containing information crucial to recovery. It is a labeled bitmap with one enty for each sec-

uor. It will be impiemented as a file and stable storage abstraction. The free list will be on a cylinder by

cylinder basis, so one of the copies will be placed on the cylinder for which it is the free list. This may

save seeks. The stable storage copy of this free list will be placed on a buddy cylinder, which will be

defined in the next section. There are four pieces of information in this labeled bitmap that are used in

recovery. These are the names of the two buddy inodes which are used to access this object, the address of

the sector that this free list entry is for, and a flag indicating whether or not the has been checked since the

last failure.

6. INODES

All inodes will be implemented as files, but not all of them need be implemented as a stable storage

file. If the object is not stable, neither is the inode. Storage for each inode will begin in its own sector.

The inodeDate information for all of the inodes will be compacted into one stable storage file and placed in

as few sectors as possible. Thus, the information commonly written is on a different sector to help prevent

failure since the more something is updated, the more likely it is to fail. It is compacted to save space. The

stable storage copies of inodes and inodeDates will also be implemented as files stored on a buddy

cylinder.

* The index blocks pointed to in the location field (indirect and doublelndirect blocks) will also be

implemented as friles. If the object and its inode are stable, then so is this file. Like all stable storage

objects, its copy is to be placed on a buddy cylinder.

Inodes for files declared to not be stable will be unstable as well -a buddy inode will not be allo-

cated. The inode and data blocks will be marked as unstable in the free list.

* There will be a static number of inodes (and therefore objects) in the system. This is because they

- 15 -

am to be implemented as files themselves, thus requiring an inode to given for it by the boot/mount pro-

cedue. The inodes and any stable storage copies that are made may be placed anywhere on the disk. It

would be advantageous to place an equal number of inodes on each cylinder. When allocating modes.

seeks may be saved by allocating one on the current cylinder. This is an advantage of having the inodes

spread across cylinders. Another, more important, reason is that the loss of any one cylinder or surface

cannot destroy many inodes.

7. MISCELLANEOUS

Formatting the disk requires laying out the volume descriptors, free lists, and space for inodes on the

disk. The formatting program must return an inode for each of these objects since they are implemented as

files scattered across the disk. These inodes must then be provided to the mount and boot operations so

they may inform the system where these objects are.

When a new inode, volume descriptor, or free list must be made, a new inode must be returned for

use by the boot routines as well as an indication of which of the old ones is no longer valid.

Once the link count for a certain object exceeds a certain number, the object will automatically be

made stable if it is not already. In this way, we guarantee that frequently used objects or objects under

heavy current use will be recoverable. If the object was unstable to begin with. it can be made unstable

once again after the link count decreases sufficiently.

Storage allocation should attempt to allocate space on the current cylinder, if possible, to save seeks.

The next step would be to allocate in the same cylinder group, and finally to allocate in different cylinder

groups. How does this fair as the system gets full? Allocation of labeled blocks will be done using a hash

function so that they are spread out and to increase the likeliness (if it is a good hash function) of finding a

free labeled block quickly.

* When the user creates a file or directory, he must specify whether or not it is to be stable or not. The

- 16 -

link counting rule helps prevent the case where the use really needed a stable storage copy and attempts to

locze this situation for him. If one file in a directory is declared stable, the directory will be made stable as

well.

The secondary field of a DiskAddress for an unstable object will contain a negative address. There

is no need to look at this second address since the inode tells us whether it is stable or not, but this is a

second line of defense.

Since volume descriptors, inodes, and free lists are implemented as files with inodes supplied at

bootup, they need not be placed in labeled sectors. We can always recover them by using a recovery stra-

tegy that uses these initial inodes as well as the information in the free list. If this information is available,

it would most likely be faster than looking at labels as well.

8. FAILURE MODES AND ASSUMPTIONS

This section discusses our assumptions concerning what types of failures may occur and what dam-

age may be done by each of these failure types. Our assumptions concerning failures are as follows:

A power failure either:

- does not interrupt an operation (i.e. occurs before it starts or after it finishes)

- interrupts it in the middle i which case the object is left detectably bad

- if physical damage is done, then only one sector is damaged

Dynamic bad blocks may occur.

Head crashes may occur. All information on ONE cylinder is lost.

With these assumptions, the failure modes are as follows:

i) power failure - no damage, no interruption

ii) power failure - no damage, interruption

iii) power failure - damage, no interruption

iv) power failure - damage, interruption

17-

,0--.,, mmmmmz muII

v) dymmic bad block

vi) head crash - lost cylinder, no interruption

vii) head crash - lost cylinder, interruption

Power failures and head crashes must distinguish the cases where an operation was -interrupted if damage

was done. This is because the damage may be done to another object (for example, while moving from one

stable storage copy to the other). Thus, the original operation would need completed while the damaged

object needs recovered.

Several sector states need not be considered. If the object is unstable, it cannot be recovered. If the

sector was free or bad, we need not worry about restoring it. The only time we need concern ourselves

with this case is when damage. was done to the free or bad sector while interrupting an operation on good

sectors. This state is treated the same as failure modes where no damage occurs, but an operation was

interupted.

9. RECOVERY PROCEDURE

The recovery procedure is discussed in this section. While the previous section presented the

assumptions and types of errors that we set out to handle, the recovery method does not make any assump-

tions as to what type of error occurred or what kind of damage was done. The only requirement imposed

by the recovery procedure is that the system remain stable long enough for recovery to take place. Other-

wise, if objects can be damaged faster than they can be recovered, there is no way to guarantee the

existence of a valid copy of any object.

Upon rebooting, the system will need to validate the data that it has so it knows that the stable copies

• are correct. There are a number of choices. Validate the entire file system before resuming any activity,

validate entries only as they are used, or some intermediate policy in which a certain number of "critical"

objects are validated before resuming user activity. The correct choice depends upon the environment in

which the system is to run. For the current implementation, though, an intermediate stance has been

- 8 -

0ni lI miimn

chosen which allows users to use the system as soon as possible with file system checks taking place along

with user opeanion. The way this is done is to validate each sector in sequence while providing Flon

demandFP validation and recovery for objects requested by a user that have not already been validated.

The in sequence validation takes the form of a background job which receives N% of the CPU for some

suitably chosen N.

It is assumed that e'ors in a sector are detectable when that sector is accessed. Thus, the in

sequence checks take the form of atempting to read every sector on the disk. If the read fails, the read rou-

tine calls the recovery routine outlined below to recover that sector. Eventually, every sector will have

been accessed and the entire disk validated. Even if the read does not fail, the system must still insure that

the object, if it was stable, matches its buddy. Thus, the read routine used in recovery will need to check

this if the read is successful. If the read is unsuccessful, the recovery procedure will handle this operation.

The user's read routine will need to be able to recover sectors as well. If the user wants to access a

sector that has not been validated, he should not be made to wait for the validation process to catch up to

him. Recovery should take place then and there. This implies that the read operation provided to the user

must be able to access the same recovery routines in case it detects an error or finds a sector that has not

been verified yet. This is important even after the validation process has finished because dynamic bad

blocks do occur, and it is questionable as to whether each instance of a dynamic bad block should require

the entire disk to be revalidated. Thus, these read routines will be the same.

The disk access routines will need modified to perform the required checking and recovery. For

example, define ReadRecover as:

PROCEDURE ReadRecover(Fileld : CARDINAL; VAR Buffer: ADDRESS;
NumBytes: CARDINAL): INTEGER;

* BEGIN
read(Fileld, Buffer, NumBytes);
if error and stable

then recover;,
elsif unstable then mark as bad in free list;
elsif (labelBlock.Checked = false and labelBlock.Stable)

* then verifyCopy;
end; (* if)

0 - 19-

END ReadRecover,

* nwhere ead is the "standard" I/o routine. The other system calls would need similarly redefined. This rou-

tine would be used by bot the user and the sequential validation process.

The sequential validation process works by calling ReadRecover on every sector on the free list with

the exceptions being free and known bad blocks. A known bad block is a sector that was previously

marked as bad and which has already been recovered if necessary.

Recovery works as outlined below. It should be noted that should an error occur while performing

this recovery, that error will be recovered in on demand mode. As was already mentioned, the free list

entry for each sector contains the DiskAddress of the buddy inodes which point to this sector, the address

of this sector (so that it may be found in the free list), and a boolean flag that says whether the sector has

been validated or not. Initially, this flag has been set to zero for every sector as the only boowp recovery

prcdr require&.

PROCEDURE recover(badSector: DiskAddress);
Open labelBlock containing this sector,
Allocate a new sector,
Search for the entry corresponding to the bad sector;
Get inode locations from free list:
Get offset of bad sector in object from free list;
With inode 1 do

* (i) X := address in primary location at the given offset;
(ii) Y:= address in secondary location at the given offset:
(iii) IF X = badSector

then Copy contents at address Y to newly allocated sector
else Copy contents at address X to newly allocated sector,

END; (* IF *)
• (iv) Change the appropriate address, primary or secondary, to

be the address of the new sector;
With inode2 do

repeat steps (i), (ii), and (iv)
[F damaged object was an mode

(this information contained in free list)
* then write the new "well known" modes to secondary store

and update in memory.
END. (* IF *)
Mark free list entry for damaged sector as bad;
Update free list entry for newly allocated sector to contain the

appropriate information and mark as having been checked:
SEND recover;

- 20 -

Verify copy simply accesss the imxde and validates that the two copies are identical. If they are not, the

most recent one is copied into the outdated one. The free list is marked as checked.

10. RECOVERY TIME

The worst case in recovery time is when every object is stable and the entire disk must be scanned.

If objects are not stable, they will be noted as being bad but no recovery is taken. Only the free list need be

accessed. If every object is stable, then only half the sectors could need to have recover called on them. If

more than half require this, then data has been 1ost. The time required for recovery is then:

(NumSectors/2) * (time to recover) +

(NumSectors) * (time to read) +

(NumSectors/2) * (time to VerifyCopy)

* This assumes that all of the valid sectors come before their invalid buddies so that verifyCopy will be

called for each valid sector. This verifyCopy would then initiate an on demand recovery of its invalid

buddy. If recovery only receives N% of the CPU in any given time slice, validation would complete in <=

• (100/N) times the amount of time it would otherwise require. It is <= since it is expected that users will

spend part of their time recovering in an on demand fashion.

* 11. OPTIIZATIONS

When an error occurs, there may be no need to recover the entire disk sequentially if the disk con-

• troller can provide information on the location of the heads during the operauon in which failure occurred.

For example, if a power failure occurred and the disk controller knew that the heads were betveen cracks 3

and 5 on cylinder 7, then only the sectors on these affected tracks need to be recovered.

- 21 -

DEFINITION MODULE FileSys;

AddressType - RECORD
surface, track, sector : CARDINAL;

END; (* AddressType *)

DiskAddress - RECORD
primary, secondary AddressType;

(* primary - closest, secondary - farthest copies. The secondary copy is
only a suggestion as to where the second copy might be. This
information is outdated after a copy is damaged and before the address
of the new copy can be propogated. *)

END; (* DiskAddress *)

Physical - RECORD
revPerSec REAL;
blockSize CARDINAL; (* logical block size *)
sectorsPerTrack,
tracksPerCylinder,
cylindersPerSurface,
numSurfaces : CARDINAL;
MaxDiskAddr : AddressType;

END; (* Physical *)

VolumeDesc - RECORD (* replicated - one on each cylinder *)

(* the volume descriptor will be implemented as a file. The first sector(s)
of this file will contain the tag which is the date this copy was last
updated. *)

version CARDINAL;
cylinder CARDINAL; (* whatcyli-ider do I reside on? *)

environment Physical;
totalBlocks CARDINAL; (* number of blocks in this volume *)
numInodes : CARDINAL; (* number of objects allowed ")
name : ARRAY (1..14] OF CHAR;
readOnly : BOOLEAN;

END; (* VolumeDesc *)

ContentsType - (INDEX, INODE, DIRECTORY, FREELIST, VOLUMEDESC, DATA);

LabelType - RECORD
inodel, inode2 DiskAddress; (* where the inodes may be found *)

sectorAddress DiskAddress; (* which sector is this the label for? *)
checked, (* has sector been verified since last fail? *)
free, (* is this sector free or in use? *)
bad, (* is this a bad block? *)
stable : BOOLEAN; (* is this sector stable? *)
contents : ContentsType; (* what is it? *)

END; (* LabelType *)

FreeList - ARRAY (l..sectorsPerCylinder] OF LabelType;
(* The bitmap .s on a per cylinder basis. One copy of the free list

is on the cylinder that it is the free list for. Thus seeks may be
minimized by finding free blocks on the same cylinder as the free
list. The stable storage copy of the free list is on a "buddy"
cylinder as described in the text.

The free list will be implemented as a file. The first sector(s)
of this file will contain the tag which is the date this copy was
last updated. *)

PathElement - ARRAY (1..141 OF CHAR; (* one element in a path name *)

Directory - RECORD

- 22 -

name : ARRAY (l..MaxLevels] OF PathElement;
(* the use of full path names allows the file system hierarchy to be

reconstructed in case of catastrophic failure. *)
fileld : DiskAddress;

END: (* Directory *)

Location - RECORD
direct ARRAY (1..NumDirect] OF DiskAddress;
indirect, DoubleIndirect DiskAddress;

END; (* Location *4

inode - RECORD
(* Inodes will be implemented as files. The first sector(s) of these files

will contain the tag which is the date this copy was last updated. *)

type - (FREE, DEVICE, DIRECTORY, FILE);
stable : BOOLEAN; (* are the object and its inode stable? *)
uid, gid : CARDINAL; (* user and group ids *)
access : Access; (* protection information *)
linkCount CARDINAL; (* if > N, object made stable if not already *)
location Location; (* index to blocks of object *)
created Date; (* when the object was created *)
inodeNumber CARDINAL; (* for use in finding offset into dates block *)

END; (* inode *)

inodeDates - RECORD
(* since this info is written with every access, it is separated so that

the critical info is not accessed often. Intuitively, the fewer times
something is accessed, the less chance for failure. It is to be written
on a labeled sector. This information, for each inode, is compacted
so that it will fit into as few sectors as possible. In this manner,
many dates may be lost with a failure, but there will be a stable copy.
By compacting them in this manner, space is saved.

* InodeDates will be implemented as files. The first sector(s) of these
files will contain the tag which is the date this czopy was last
updated. *)

inodeNumber CARDINAL; (* so we can double check that this is the right one *1
lastAccess,
lastModify Date;

* END; (* inodeDates *)

(* operations in addition to the "standard". *)

MakeStable(name : ARRAY OF CHAR) INTEGER;
(* takes the name of an object and makes it stable storage if it is not

already. It finds a buddy inode which gets a copy of the inode
to be made stable, and both inodes are made stable in the free list.
The object will then be copied. *)

MakeUnstable(name : ARRAY OF CHAR) : INTEGER;
(* takes the name of a file and makes it not implemented with stable

storage. One "buddy" inode is freed, the other is just noted as being
* unstable in the free list. *)

Recover(name : ARRAY OF CHAR) : INTEGER;
(* recovers the specified object from its stable storage copies *)

(* in addition to these, create and makeNode will require an extra parameter
to denote whether they should be stable or not at the outset. All

• operations that alter data will need to alter both copies in a stable
storage fashion. *)

END FileSys.

- 23 -

FAILURE MODES AND RECOVERY

I believe that the current state of a sector on the disk may be characterized as follows:

(free, allocated) X (open, closed) X (stable, unstable) X (labeled, unlabeled) X (normal, bad) X (clean, dirty)

This type of information will be used to characterize a sector that suffers a failure.

The allowable operations are : open, close, create, duplicate, iseek. read, write, makeNode,

absoluteLink, symbolicLink, unlink, changeDirectory, labelSector, makeStable, destabilize, verify, recover.

For failure modes, we made the following assumptions,

A power failure either:

- does not interrupt an operation (i.e. occurs before it starts or after it finishes)

- interrupts it in the middle in which case the object is left detectably bad

- if physical damage is done, then only one sector is damaged

Dynamic bad blocks may occur.

Head crashes may occur. All information on ONE cylinder is losL

With these assumptions, the failure modes are as follows:

i) power failure - no damage, no interruption

ii) power failure - no damage, interruption

iii) power failure - damage. no interruption

iv) power failure - damage, interruption

v) dynamic bad block

vi) head crash - lost cylnder, no interruption

vii) head crash - lost cylinder, interruption

Power failures and head crashes must distinguish the cases where an operation was interrupted if damage

was done. This is because the damage may be done to another object (for example, while moving from one

stable storage copy to the other). Thus, the original operation would need completed while the damaged

- 24 -

-2-

object needs recovered.

Several states need not be considered. If the object is unstable, it cannot be recovered. If the sector

was bad, we need not worry about restoring it. The only time we need concern ourselves with this case is

when the failure does damage to the bad sector while interrupting an operation on good sectors. This state

is treated the same as failure modes on good sectors where no damage occurs, but an operation was

interrupted. The type of recovery used for the assumed failure modes does not use labeled sectors. While

they are useful in the case of catastrophic failure, they are not useful for sable storage. Thus, we don't care

whether or not the block is labeled. Likewise, the actions taken will not depend on whether or not the

object was opened or closed at the time of failure. The objective will be to return it to its previous state or

to close it, which ever is appropriate for the failure. Thus, in summary

- only concerned with stable objects (can't recover unstable ones)

- failure damaging already bad sector handled in failure modes

- we don't care if a sector is labeled or not

- we don't care if an object was open or closed

The states which we must concern ourselves with are : stable X normal X (clean, dirty) X (free,

allocated). We may only dismiss one failure mode. That is when a power failure occurs causing no

damage and no interruptions. Nothing needs recovering in this case. The other six failure modes must all

be considered.

* Of the operations, their effect on the sectors should be reflected through the current state. Thus, we

need not consider operations.

The number of cases that must be considered is thus reduced to 4 X 6 = 24.

We may further reduce the number of cases by noting that when a sector is free there can be no lost

data if it is damaged. Thus, the worst case for a failure concerning a free sector would be if the failure

interrupted an operation concerning other sectors. This is handled the same as the case where the sector is

allocated and there is no damage but the operation is interrupted. If the free sector was damaged, it must

- 25 -

0 m m mmaI~l~ ' ' i m

-3-

be m bad i its free lists and its buddy must be marked as unstable.

The dirty state may come about in two ways. First, if an operation is interrupted between updates to

stable storage copies, then the two copies are not identical, or are dirty. This is handled in the failure

* modes in which an interruption has occurred. The second is when a failure has occurred which damages a

copy. This is handled in the failure modes where damage occurs. The only time dirty states come about

and are not already covered is when a failure occurs to an already dirty sector (i.e. before or during the

0 recovery action for that object). In this case there are two possibilities. First, there may have been some

operation on the sector that was interrupted although that sector was not damaged. Another sector may be

damaged. This case is Ireated just like the sector was normal and some failure had occurred to make the

sector inconsistent. This is only possible since there was no damage done to the sector. As far as the

system is concerned, it may have just been made dirty. The second case is when damage occurs to a dirty

sector. Since it is dirty, it does not have a valid stable storage copy. Thus, the object is lost. This must not

occur too frequently and so we must have assurances that the expected time to failure is less than the

expected recovery time. If the expected time to failure is less than the expected recovery time, stability

could be gained by increasing the number of stable storage copies.

* With these qualifications, we need only look at the recovery actions required for the sector state

(stable, normal, clean, allocated). The others are derivable from these, as discussed above.

CASE I (pier failure - no damage/interruption)

Since there was no damage, but the operation was interrupted, then one of the two copies was either only

partially updated or not updated at all. To recover from this, one needs to replace the invalid copy with its

* stable storage copy.

CASE 2 (power failure - damaged sector/interruption)

* Both a sector was damaged and the operation was interrupted. There are 2 cases for this.

A. The damaged sector occurred in the object of the operation. Since a sector was damaged.

- 26 -

I0 I

.4.

it may no longer be used as a buddy irn a stable st e pair. The recovery actions are:

i) allocate two fm buddy sectors

ii) copy undamaged copy of sector to these new sectors

(here is where the interruption is recovered)

iii) deallocate old, undamaged sector

iv) label damaged sector as bad in free lists

v) label damaged sector's buddy as free and unstable

vi) update links to point to new sectors

B. The damaged sector occurred in an object different from that being operated on (for example,

while moving from one stable storage object to its buddy).

i) recover object of operation as in CASE 1.

ii) recover damaged object, if it was stable, as in CASE 2, A.

CASE 3 (power failure - damaged sector/no interruption)

This situation is basically a dynamic bad sector. See CASE 4.

CASE 4 (dynamic bad sector)

Same as CASE 2, A

CASE 5 (head crash - no interruption)

Must recover an entire cylinder. It does not matter which cylinder since the operation either never started

or already completed (i.e. it wasn't interrupted). For each sector on the lost cylinder, either it was stable or

it was unstable. For stable sectors :

* i) We may find the stable storage copy of the free list by looking at its "well known" inode.

This locates the buddy cylinder.

- 27 -

=0==.= =,u=s ,m =s= =m m

ii) For each stable sector on the lost cylinder, ueat it as if a dynamic bad sector had

occurred and perform the steps in CASE 2, A.

CASE 6 (head crash - interruption)

We must recover the lost cylinder and, if the interrupted operation was not working with the damaged

cylinder, we must recover the object of the operation as well. 2 cases

A. If the head crash occurred on the cylinder the operation was working on, then this case is

just like a head crash with no interruptions. The stable copy is simply used as the good

copy and recovery proceeds as in CASE 5.

B. If the head crash did not occur on the cylinder of operation, then it must have occurred

between copies. To recover we must restore the object being operated on and recover the

lost cylinder. We do this by

S
i) recover the cylinder as in CASE 5

ii) recover the object of operation as in CASE I.

* To be done:

Cases where the operation was a recovery operation. How much could be lost? (by the weekend)

* For each recovery procedure, investigate what specific operations are involved and how long

they may take with this design. (by the weekend)

Worst case failure and recovery time. (1 week)

Recovery time if, upon restarting the system after a failure, N% of the CPU is devoted to recovery. (?)

- 28 -

0•,. .,.,, m ,a .m mIIII

APPENDIX mI

A SOFTWARE PROTOTYPING ENVIRONMENT

-29-

StarLite: A Software Prototyping Environment

1. Introduction
The goal of the StarLite project is to test the hypothesis that a host prtotyping environment

can be used to significantly accelerate the rate at which we can perform experiments in the areas
0 of operating systems, databases, and network protocols. This paper discusses the scope of the

StarLite software prootyping project.
A software protoryping environment is a software and/or hardware package that supports

the investigation of the properties of a software system in an environment other than that of the
target hardware. Prototyping tools range from IBM's Virtual Machine operating systems to
discrete-event simulation languages and queuing analysis packages. Except for the VM approach

0 to prototyping, most systems support only the analysis of an abstraction of a given software
system. Thus, them is the persistent problem of validating the correctness of the model.

The StarLite software prototyping environment combines the benefits of the VM approach
with those of modeling systems. The benefits of the VM approach am attained to the extent that
development is in a host environment rather than on target hardware and that the same software
modules are used for the host analysis and development phases, as well as for embedded testing
on the target hardware.

The components of the StarLite environment include a Modula-2 compiler, a symbolic
debugger, an interpreter for the prototyping architecture, a window package, and an optional
simulation package. The compiler and interpreter are implemented in C for portability; the rest
of the software is in Modula-2. The prototyping environment has been used to develop a non-
proprietary, UNIX-like operating system that is designed for a multiprocessor architecture, as
wel as to perform experiments with concur ncy control algorithms for distributed database
systems. Both systems are organized as "-odule hierarchies composed from reusable
components.

As one measure of the effectiveness of the environment, it is often possible to fix errors in
the operating system, compile, and reboot the StarLite virtual machine in less than twenty
seconds. The total compilation time on a SUN 3/280 for the 66 modules (7500 lines) that
comprise the operating system is 16 seconds. The StarLite interpreter, as measured by Wirth's
Modula-2 benchmark program[l], executes at a speed of from one to six times that of a PDP
11/40, depending on the mix of instructions.

Another measure of the effectiveness of the prototyping environment is the ease of
developing and evaluating application software. Distributed database software, which is one of
the target research areas, is being developed to demonstrate StarLite's prototyping capability.
The growing importance of distributed database systems in a large number of applications, such
as aerospace and defense systems, industrial automation, and commercial/business applications,
has been well acknowledged, and has resulted in an increased research effort in this area.
However. evaluating the performance of distributed database systems or even testing new

* algorithms has required a large investment of time and resources. One of the primary reasons for
the difficulty in successfully evaluating a distributed database system is that it takes time to
develop a system. Furthermore, evaluation is complicated since it involves a large number of
system parameters that may change dynamically. As a result, the field of distributed database
evaluation currently lags other research areas. Performance results are inconclusive and
sometimes even contradictory [2]. We feel that an important reason for this situation is that many

* interrelated factors affecting performance (concurrency control, buffering schemes, data
distribution, etc.) have been studied as a whole, without completely understanding the overhead

- 30 -

0

imposed by each. An evaluation based on a combination of performance characterization and
modeling is necessary in order to understand the impact of control algorithms on the performanc
of distibused database systems.

The StuLite system can reduce the time and effort necessary for evaluating new
technologies and design alternatives in distributed database systems. From our past experience,
we observe that a relatively small portion of a typical database system's code is affected by
changes in specific control mechanisms. By property isolating the technology-dependent portions
of a database system using modular programming techniques, we can implement and evaluate
design alternatives very rapidly. Although there exist tools for system development and analysis,
few prototyping tools exist for distributed database experimentation. Especially if the system
designer must deal with message-passing protocols and distributed data. it is essential to have an
appropriate prototyping environment for success in the design and analysis tasks.

When prototyping software systems, there should be assumptions and requirements about
the prototyping environment and the target system. They form the basis for evaluating
prototyping tools and environments. In this paper, we first discuss assumptions and requirements
for prototyping. We then present one of the programming interfaces of the StarLite environment.
One of the benefits of having a prototyping environment such as StarLite is that we can develop
application software that provides rapid answers to technical questions. To demonstrate the
capability of the StarLie environment. distributed database systems have been implemented. The
results of experiments with those systems are described.

2. Assumptions
There are three problems to address when prototyping software: intrinsic, technological, and

software life-cycle problems. Our primary assumption is that the solutions to technological
problems compose a relatively small percentage of a typical system's code, even though a large
percentage of the design phase may be occupied with technology issues. Thus, the majority of
the code deals with intrinsic problems. such as the protection mechanism for a file server, rather
than with technology issues, such as the access time or capacity of a disk. By properly isolating
the technology-dependent portions of a software system behind virtual machine interface
definitions, software can be developed in a host environment that is separated from the target
hardware.

As IBM discovered with their VM system, it is cost-effective to provide environments
whose sole purpose is to support software development. A host operating system will always
provide a friendlier development environment than a target hardware system. The bare machine
environment is the worst possible place in which to explore new software concepts. For example,
even the recovery of the event history leading up to an error in a distributed system can be a
difficult and, in some cases, an impossible task.

Debugging is greatly facilitated in the host environment. The StarLite symbolic debugger
supports the examination of an arbitrary number of execution "threads". As a result, the state of a
distributed computation can be examined "as a whole". In addition to aiding fault isolation, the
use of a host environment also facilitates fault insertion. For example, the packet error rate on a
subnet could be increased to determine the effect on an internet.

* Before the use of a host environment becomes feasible, however, it must be possible to
simulate the machine-dependent components of a system on the host. The first step towards this
goal is to require machine-independent interfaces. For instance, rather than referring to a
machine status word at an absolute address, the operating system might invoke a procedure to
return the word's value. When the system is executed on the host, the implementation module
corresponding to the procedure would simulate the actions of the target hardware. When
executing on the target, the implementation would read the content of the absolute address.

- 31 -

0

Next, for each device used in a project, it is necessary to implement a validated simulation

modeL Tis propery is necessary for correctness and for the support of performance studies in
which t aalysis of a prototype is used to predict performance on the target hardware. The
reMults of the virtual machine studies by Canon(3] indicate that these assumptions are reasonable.
With StarLir, it is also possible to execute in a "hybrid" mode in which some modules execute
on the target and some on the host. For instance, the disk for a file server could either be a target
disk system or a simulated disk when the server code is executing on the host.

It is also possible to capture the timing effects of instruction execution, but not to the level
of individual instructions. If that degree of accuracy is required. a VM implementation should be
considered.

The fina assumption is for the existence of a high-level language whose compiler supports
separate compilation of units and generates reentrant code. The StarLite system can be replicated
for any such language.

The separate compilation feature is used to "build" a system. For example, the Coroutines
module, which is normally implemented in assembly language, forms the basis for the concurrent
programming kernel, Processes. The concurrent programming kernel is then used to build the
simulation package. Finally, the concurrent programming kernel, the simulation, and window
packages are used to implement the virtual machine interface of the application package. Figure
1 illustrates the module dependencies for a prootyped application both in the host environment
and on the target hardware. Remember that the interfaces presented to the programmer are
invariant; only the implementations change with a switch to a different environment.

In order to facilitate rapid prototyping, we are developing a library of generic device
objects. At present, the object library includes processes. clocks, disks, and Ethemets. Each
device is presented to the user as an abstract data type, which is implemented by using the
simulation package to model its characteristics and the window package to display its actions. As
each data type is instantiated, a window is created to display the operations on that instance and
also to serve as a point of interaction with the user. For example, a disk window provides a profile
view of the device with a moving pointer to indicate head movement and sector selection. In
designing the window interface, the goals were to present uniform options that could be used
either in "hybrid" mode for real devices or in host-only mode. Figure 2 illustrates the StarLite
windows for clocks and Ethemets.

3. Requirements for Prototyping
The primary project requirement for StarLite is that software developed in the prototyping

environment must be capable of being retargeted to different architectures only by recompiling
and replacing a few low-level modules. The anticipated benefits are fast prototyping times,

* greater sharing of software in the research community, and the ability for one research group to
validate the claims of another by replicating experimental conditions exactly.

The StarLite prototyping architecture is designed to support the simultaneous execution of
multiple operating systems in a single address space. For example, to prototype a distributed
operating system, we might want to initiate a file server and several clients. Each virtual machine
would have its own operating system and user processes. All of the code and data for all of the

• virtual machines would be executed as a single UNIX process. Figure 3 illustrates the machine
models supported by the StarLite architecture.

In order to support this requirement, we assume the existence of high-performance
workstations with large local memories. Ideally, we would prefer multi-thread support, but
multiprocessor workstations are not yet widely available. We also assume that hardware details
can be isolated behind high-level language interfaces to the extent that the majority of a system's
software remains invariant when retargeted from the host to a target architecture.

- 32 -

TestSysem
1

Host Operating System

0I

Fig. la. Module Hierarchy for the StarLite System

S Test Sysm

Coroutiines

Physical Hardware

Fig. lb. Module Hierarchy for the Target System

- 33 -
0

me Lzecnu. requirements to be satisfied by an interpreter that supports multiple
openting systms running in a single, large address space are interesting. They include high
speed, compact code, exception handling, good error detection, demand loading, dynamic restar
fsl context switches, hybrid execution modes, and portability.

High 'Speed. Obviously, the speed of the host architecture is a determining factor in the
useuLdness of any prototyping effort. Prototyping is most effective for logic-intensive programs,
such as operating systems, because the ratio of code to code-executed-per-function is high. For
example, running user programs at the shell level on top of the prototype operating system, which
is running on an interpreter. provides a response-level comparable (several seconds) to a PDP- 11.
As the number of users increase or as the number of data-intensive applications increase, the
response time increases considerably. Data-intensive programs tend to apply a large percentage
of their code to each data point. Thus. the number of data points determines execution speed. In
many cases, having fast machines is the only effective way to prototype data-intensive
applications.

Since the StarLite system uses an interpreter to define its virtual machines, we tend to stay
away from data-intensive test programs. It would be nice to have an execution speed comparable
to a bare machine, but that could only be achieved by building a software prototyping
workstation. For now, we are satisfied as long as the edit-compile-boot-and-test cycle is
significantly faster than any other environment.

" -; - -a -

-' Ic. ,a~

X1~ '1Ig'Q87 *486'M IC84 *2a3 ' I

6095 IWS~ I2N ! f Be I s' ..*it

"sai e5 Q as SS'C 2 ", 7 2 2; .o o -o , -

,} 2 9 17 2.F 2:1 .: 1 . - 7 .

saI 2'P6 -4 .Z Fh !A,

a+" ; AW+ SAM+ :63° 49 t :-,' 1"3 "':' 1

MCag :sse :' A ":1 " - ' i ' * - - o ...
25*5 '147 .'d as "it - 2

Fig. 2. Clock and Eth.-et Windos.

- 34o

sas@o~'~z ss~*': : ':-

I l sI ia mi I2F~s~ a:~'.~.

UNIX Process.. •......... ..

Test Test

System "" Systm

Dismibud Processors

Cro s ... Coouunes

StarLie
lnterpreiru

UNIX Proce

Test
System

Multiprocessor

* Mp
StatLite

Interpreter

UNIX Process

Test
System

Single Processor{ Corouunes]

* Lrii• Interpreter

Fig. 3. Machine Models Supported by StarLite

Compact Code. The generated code for the StarLite architecture is extremely space
* efficient since it is based on Wirth's Lilith architecture(41. For example, the object code (.o file)

sizes for a sample 1,000 line program were SUN3-Modula2(130K). SUN3-C(65K). PC286-

- 35 -

0

C(35K), StLi.i-Modula2(tIK). Compact code has a significant effect on the speed with which
the evirwnea can load both system components and user-level programs that might run on
thoew cmp=mfl. Compactness also increases cache locality, reduces page faults, and
maXimi=S the quantity of software that can be co-resident in the prototyping system.

Exception Handling. The benefits of exception handling support for large system
development have already been documented by Rovner[51.

"How a program behaves in unusual situations is an essential part of its
specification. Clear specification is most naturally achieved by outlining
expected behavior separately from the list of the problems or unusual cases that
might arise. Explicit provision in the language for decomposing a program into a
normal case part and an exception handler for the exceptional cases improves
predictability, robustness, and reliability."

In the Staztite environment, exception handling is provided through procedure calls to an
Exception module, which is implemented in Modula-2.

Error Detection. The benefits of integrity checking as an essential component of a
language's implementation have been discussed by Wirth[4].

"Guaranteeing the validity of a language's abstractions is not a lwuu'y, it i a
necessity. It is as vital to inspiring confidence in a system as the correctness of
its arithmetic and its memory access."

The StarLite architecture supports checks for overflow/underflcw, division by zero, subrange and
subscript checking, NIL pointer checks, illegal addresses, and stack overflow. Subrange and
subscript checks are generated by the compiler.

* Demand Loading. The StarLite architecture supports demand loading; that is, modules are
loaded at the point that one of their procedures is called. Thus, a large software system begins
execution very quickly and then loads only the modules that are actually referenced. For
example, one version of the operating system defers loading the file system, or even the disk
driver, until a file operation is performed.

At the current time, a linker is superfluous; as soon as a module is compiled, it may be
executed. Demand loading and the absence of linking greatly enhances the. efficacy of the
StarLite debug cycle. The only limit on debugging is how fast the programmer can discover bugs
and type in the changes.

Dynamic Restart. When debugging software, it can be annoying to discover an error,
* return to the host level, compile, and then run the system to the point of error only to discover

another silly mistake. The StarLite architecture is designed so that an IMPLEMENTATION
module can be compiled in a child process while the interpreter is suspended. That module can
be reinserted into memory and the system restarted.

Another dynamic restart feature supports the emulation of partial failure as might be
experienced in a distributed system. The Modula-2 compiler does not attempt to statically
initialize any data area. Thus, any module, or set of modules, can be dynamically restarted at any
time without reloading the object modules from disk. For a distributed system, the user can
induce virtual processor failures and then "bring up" the operating system on those nodes without
loading any software from disk.

* Fast Context Switches. Unlike the "high-speed" requirement, achieving a fast context
switch time can be realized independent of the characteristics of the host machine. For example,

-36-

there am no context switches within the interpreter, which is basically a C procedure in a closed

loop. Therefore, a host architecture with a slow context switch time has no effect on the

interpreter's context switch time, it is only a function of the state information that must be saved

and restored. This is an important requirement as a typical operating system "run" can involve

thousands of context switches.

Each implementation of the architecture must be balanced to match the characteristics of

the host machine. The current SUN 3/280 interpreter executes 200,000 coroutine
transfers/second. On the other hand. the IBM PS2/50 interpreter executes at 10.000
transfers/second.

Hybrid Execution Modes. In a prototyping environment, it is advantageous to use
services that already exist in the host environment. For example, it is possible to "mount" the

host file system on a leaf of a prototyped file system, or even as the prototype's "root" file system.

Another example would be to use the host's database services.

Yet another example occurs in situations where the prototype would execute partially in the
host and partially in a target system. An illustration of this case would be the use of a physical
disk server by an operating system running in the host prototyping environment.

The keys to hybrid execution are architectural support and the definition of interfaces that
remain invariant to changes in implementation technology. For example, the following interface
is used in the operating system.

PROCEDURE Load(VAR programName: ARRAY OF CHAR):BOOLEAN;

It is used by the prototype operating system's "exec" system call to load user programs into
memory. The interface "hides" implementation details such as the existence of a prototype file
system or the virtual memory architecture. This "information hiding" principle is also used in
designing device interfaces. As a result, the operating system never knows whether devices, such
as disks, or services, such as "Load", are real or are emulated.

Emulation services are usually implemented by VM ROM routines. VM ROM can be used
to provide functionality that the prototype software does not. A VM ROM routine has a

DEFINITION module but its implementation is part of the interpreter. At execution time, the
architecture intercepts calls to procedures in VM ROM and directs them to C routines. For
example, when prototyping an operating system to experiment with file system issues, it is not
necessary to worry about program management; VM ROM routines can be used to interface to an
existing file system. At a later stage of development, the VM ROM code can be gradually
replaced with code for a prototype file system.

It is easy to add additional packages to the VM ROM interface. The disadvantage is that all
ROM packages must be co-resident with the interpreter. In a future version of StarLite under
IBM's OS/2, all of the ROM packages wil be dynamically linked on demand.

Portability. One of the benefits of developing systems in the StarLite environment is that
the code can be shared with other researchers. To facilitate sharing at the object code level, the
instructions generated by the compiler and its object module format are canonical. That is, the
byte ordering is fixed, as is the character code (ASCII), and the floating point format (IEEE). If
the host has different conventions, the compiler performs the conversions as it generates code.

To the extent that an implementation module is machine invariant, it should be possible to

transmit object modules from one site to another and to have them work.

The StarLite operating system design project is experimenting with the use of "safe"[5],
canonical object modules for user-specified line and protocol filters, schedulers, and application-

- 37 -

specific file systems. For example. the operating system stores method descriptions for file access
in the camdcal object code format. The advantage of a canonical representation is that the
volume can be transported to a different machine, which can then interpret the access method to
manipulam the volume.

4. The Programnuning Interface

In this section. we discuss two different interfaces, one at the machine level and one at the
user level, to illustrate how an interface definition can be used to "hide" environmental concerns
to the extent that prototyped software can be easily retargeted from one machine to another. The
first interface to be presented defines a multiprocessor, the second is for transaction management
in a database system.

4.1 A multiprocessor interface

According to Wirth(l], the coroutine, or thread, is the fundamental data type for
constrcting multiprogramming systems. Therefore, it is a concept that remains invariant across
different hardware configurations. As a result, the Corounne type, as well as the InitCoroutine
and Transfer procedures, are inherited from Wirth's(lI COROUTINE module. The Transfer
procedure is an intra-processor operator, it only performs a context switch between two
coroutines executing on the same processor.

However, these operators do not form a functionally complete set for a multiprocessor. It
must be possible to assign a coroutine to an idle processor and to stop a coroutine that is running
on another processor. The Status operator can be used to query the state of a processor. It is used
by the operating system to determine how many processors are available at boot time. By
convention, the bootstrap coroutine is assigned to processor zero.

The SpinLock data type and operators provide a memory synchronous test-and-set action.
Spin locks are used to implement low-level, non-blocking critical sections. Interrupts and trap
handling are provided by a separate interface, which is not listed. The StarLite virtual machine
multiplexes the virtual processors in such a way that the effect is equivalent to executing a
program on a physical multiprocessor.

The listing for the Mp module follows, together with a multiprocessor test program and its
sample output. The test program, which is booted on processor zero, creates three coroutines.
Each coroutine has a distinct stack for procedure variables but shares any module global
variables. The code for the three coroutines is shared and its action is to continuously prim the
identification number for its coroutine. For the example, the identification number is the same as
each coroutine's processor number. The sample output illustrates the non-deterministic nature of
the execution sequence.

The Mp module has been used to execute a seven processor version of our multiprocessor
operating system. The available memory and swap space on our Sun workstation is the limiting
factor to running even higher number of processors. Apparently, the windows used for each
machine's virtual terminals consume most of the space.

- 38 -

0

The I Inta for a Mlioesr000*)

DEFDIIlON MODULE Mi. (o--" Te Inurfin tars MUJZIJ .or 0 '"")

FROM SYSTEM &MPORT ADDRESS;
IMPO T COROUT"41

CON NOTAVA BL 0 =s (" Pocesr UM s -*---0 0*")

IDLE a 1;
RUNNING 5 2;
SPINNING = 3;

TYPE Spinock,
(0 A vwabi of type SPINLOCK is used to "prot"t* critical sections. ")

PROCEDURE Spinlrd(VAR s:SpinLock):
(* This muazu inidtalize SPNLOCK prior to its use. ")

PROCEDURE SpinJI(VAR s:SpinLock);
(0 Thi rouine is executed prior to entering a cntical section.)
(If die critical section is available, the processor enters and is 0)
('guarneed exclusive access. If the critical section is rot available. ")
('the pmcessor spins unil the SPINL3OCK allows enry. *)

PROCEDURE SpinOut(VAR s:SpinLock);
('This routine is executed on leaving a critical section. 0)
('If one ot more other processors are SPINNING. one of them is chosen to enter. *)
('The othms continue SPINNNG. 0)

TYPE Coroutins - COROUTINE.Corouane:
(A vaiable of type COROUTINE is used to identify athread. 0)
('This variable is set by the INITCOROLTTNE procedure when the coroutine ")
(I is initialized. It may then be used to reference the coroutine)
(0 when performunt a TRANSFER operation.
PROCEDURE InirCoroutine(p: PROC; stack: ADDRESS; size: CARDINAL;

VAR coroutine : Coroutine);

(0 This routine creates a coroutine starting at procedure "p" with stack ")
('at address "stack" and of size "size". The coroutine identifier for ")
('the newly creatd coroutine is returned in the variable "coroutine".

PROCEDURE Transfer(VAR fom, to : Coroutine);
('This mutine just implements a simple context switch from
('coroutine "from" to coroutine "to .

PROCEDURE Begin(processor: CARDINAL; VAR to : Coroutine);
(6 This routine assigns a coroutine to an IDLE processor. 0)

PROCEDURE Stop(processor : CARDINAL; VAR from : Coroutine);
(* This roune returns a processor to the IDLE state. *)

PROCEDURE Status(processor: CARD[NAL):CARDINAL;
(0 This mudne returns the status (NOTAVAI. IDLE, RUNNING, SPINING) ")
(0 of the selected processor. ")

END Mp.

- 39 -

A Muktlp m Twa Prgram

MODULEJ wir

IMPORT Mi;
FROM SYffIM IMPORT ADR:
IMPORT nOu. Sqmu e;:

VAR pecl. prc2. prc3: Mp.Coroutme;
pISdr. p2Stk. p3St: ARRAY (1..5001 OF CARDINAL.

PROCEDURE codeForEacho; (0 this code is shared by all the processors)
VAR i looag C : CARDINAL; (0 but the local data is uniqu p processor)

BEGIN
i :- Sequaie.Coug); (* returns the next number in a seqllm. a processor id *)
Ioop n:= 0
LOOP
InOuWrintCd(L 1);
IF loopCzir MOD 50w 0 THEN lnOut.WriteLnO; END'
INC(1oopCnt);

END:
END codr~k

VAR c: CARDINAL,
BEGIN
Mpordlaoune(odeForEach. ADR(plStk). SEplStk). prcl);
MpinitCorouine(codeForEach. ADR(p2Stk), SIZE(p2Stk). prc2);
MplnitCoroutine(codeForEach. ADR(p3Stk). SIZE(p3Stk), prc3);
Mp.Begin(l, prcl); (0 start prcI on processor 1 0)
Mp.Bgin(2. Prc2); (0 start prc2 on processor 2 ")
c:= 0.
LOOP
InOuLWrit("0");
INC(c);
IF c MOD 50 = 0 THEN InOut.Writel.,nO END
IF (c MOD 10)-I THEN Mp.Stop(1. prcl); Mp.Begin(l. prc3); (* multiplex pncl/ 3 on processor I)
ELSIF (c MOD 10)=8 THEN Mp.Stop(l. prc3); Mp.Begin(l. prcl);
END;

END;
END test.

Sample Output for Four Processors

02
22222 222222222 2 2222222200000002222222222222
22222 2 '222222222222222220003
33333333333333333333333333333333222222222222222222222222
22222 2 222222222200000001
1111111111111111111111111111111111 12222222222222222222222222222222
222222222000000333333333333333333
333333333333333333333333322222222222222222222222222222222222222
222220000011111111111111
III 11111111 111111IlII111222222222222222222222222222222222222
222220000003333333333333333333333333

4.2 A distributed transaction management interface

The transaction management interface of the StarLite prototyping environment is designed
to facilitate easy extensions and modifications. Server processes can be created, relocated, and
new implementations of server processes can be dynamically substituted. It efficiently supports a

- 40 -

q=M of dijoibted database fAUnions at the operating system level, and facilitates the
commctiot of multiple "views" with diffemn characteristics. For experimentation, system

= be adjuste according to application-dependent requiremens without much
• eW fr new sysm setup. Since one of the design goals of the StarLite system is to conduct
an empirical evaluaton of the design and implementation of application software for opersang
sysm - icon proocols. and transaction management, it has built-in support for
performance measurement of both elapsed time and blocked time for each transactionf6].

Mh transaction management prototype provides support for concurrent multi-transaction
executo including transparency to concurrent access, data distribudon, and aomicicy. An
insta e of the prototyping environment can manage any number of virtual sites specified by the
user. Modules that implement transaction processing are decomposed into several server
pcesses, and they communicate among themselves through ports. The clean interface between
server processes simplifies incorporating new algorithms into the prototyping environment, or
testing alternate implementations of algorithms. To permit concunt transactions on a single
site, there is a separate process for each transaction that coordinates with other server processes.
Figure 4 illustrates the structure of the transaction management protocyping environment.

The User Interface (UI) is a front-end invoked when the prototyping environment begins.
UI is menu-driven, and designed to be flexible in allowing users to experiment various
configurations with different system parameters. A user can specify the following,

User Interface

Configuration Manager J Performance Monitor

Transaction Generator

Servers Transaction Manager

• Resource Manager DB

Message Server

0

StarLite System

Fig. 4. Structure of the Transacnon Management Prototyping Environment

0 -41-

9 system configuration: number of sites and the number of server processes at each site.

9 databse configuration: database at each site with user defined structure, size, granularity, and
levels of repication.

* load characteristics: number of transactions to be executed, size of their read-sets and write.
sets, mnsaon types (read-only or update) and their priorities, and the mean interarrival time
of transactions.

* concurrency control: locking, thmestamp ordering, and priority-based.
* failure characteristics: the site and the time of a crash, and the type of recovery to be

performed.
UI initiates the Configuration Manager (CM) that initializes the data structures necessary

for transaction processing from user specifications. CM invokes the Transaction Generator at
appropriate time intervals to generate the next transaction to form a Poisson distribution of
transaction arrival times. When a transaction is generated, it is assigned an identifier that is
unique among all transactions in the system. Transaction execution consists of read and write
operations. Each mad or write operation is preceded by an access request sent to the Resource
Manager, which maintains the local database at each site. If the access request cannmot be granted.
the Traisaction Manager (TM) executes either a blocking operation to wait until the data object
can be accessed, or an abort procedure, depending on the siuation. Transactions commit in two
phases. The first commit phase consists of at least one round of messages to determine if the
transaction can be globally committed. Additional rounds may be used to handle potential
failures. The second commit phase causes the data objects to be written to the database for
successful transactions. TM executes the two commit phases to ensure that a transaction commits
or aborts globally.

The Message Server (MS) is a process listening on a well-known port for messages from
remote sites. When a message is sent to a remote site, it is placed on the message queue of the
destination site and the sender blocks itself on a private semaphore until the message is retrieved
by MS. If the receiving site is not operational, a time-out mechanism will unblock the sender
process. When MS retrieves a message, it wakes the sender process and forwards the message to
the proper servers or TM. The prototyping environment implements Ada-style rendezvous
(synchronous) as well as asynchronous message passing. Inter-process communication within a
site does not go through the Message Server, processes send and receive messages directly
through their associated ports.

The inter-process communication structure is designed to provide a simple and flexible
interface to the client processes of the application software, independent from the low-level
hardware configurations. It is split into three levels of hierarchy, as shown in Figure 5.

* The Transport layer is the interface to the application software, thus it is designed to be as
abstract as possible in order to support different port structures and various message types. In
addition, application level processes need not know the details of the destination device. The
invariant built into the design of the inter-process communication interface is that the application
level sender allocates the space for a message, and the receiver deallocates it. Thus, it is
irrelevant whether or not the sender and receiver share memory space, i.e.. whether or not the

* Physical layer on the sender's side copies the message into a buffer and deallocates it at the
sender's site, and the Physical layer at the receiver's site allocates space for the message. This
enables prototyping distributed systems or multiprocessors with no shared memory, as well as
multiprocessors with shared memory space. When prototyping the latter, only addresses need to
be passed in messages without intermediate allocation and deallocation.

The Physical layer of message passing simulates the physical sending and receiving of bits
0 over a communication medium, i.e., it is for intersite message passing. The device number in the

- 42 -

............. °... . . .

: . client

0 TrnpomSend

TranspoTpReceiveo

Network.eieve

•ew rkS n - _tT
Physcal.endPhysical.Receive
Physcal.end(Message Server)

Communication device

Fig. 5. Inter-Process Communication

interface is simply a cardinal number this enables the implementation to be simple and
extensible enough to support any application. To simulate sending or to actually send over an
Ethernet in the target system, for example. a module could map network addresses onto cardinals.
To send from one processor to another in a multiprocessor or distributed system, the cardinals can
represent processor numbers.

Messages ae passed to specific processes at specific sites in the Network layer of the
communications interface. This layer serves to separate the Transport and the Physical laars, so
that the Transport layer interface can be processor- and process-independent and the Physical
layer interface need be concerned only with the sending of bits from one site to another. The
Transport layer interface of the communication subsystem is implemented in the Transport
module. A Transport-level Send is made to an abstraction called a PoriTag. This abstraction is

0 advantageous because the implementation (i.e., what a PortTag represents) is hidden in the Ports
module. Thus the PortTag can be mapped onto any port structure or the reception points of any
other message passing system. The Transport-level Send operation builds a packet consisting of
the sender's PortTag, used for replies, the destination Porrtag, and the address of the message. It
then retrieves from the destination PortTag the destination device number. If this number is the

* same as the sender's, the Send is an intra-site message communication, and hence the middle-
level Send is performed. Otherwise the send requires the Physical module for intersite

- 43 -

0m~ mmm mmmmm n

c Note that accesses to the implementation details of the PobrTag ame restricted to
the moetue tht actually implements it; this enables changing the implementation without
recompaft the mg of the system. As shown in Figure 6. the Transport module, which is the
higlea-huvel interfa of the inte-process communication structure for the client processes, is
vay simple Ind elegant, and it achieves the desired flexibility.

$. Prototyplng a Multiversion Database: An Experiment

To evaluate the prototyping environment, we have implemented a multiversion database
system and its corresponding single-version database system using the environmeM, and
performed a series of experiments for performance comparison between them. The experiments
were focused on a sensitivity study of the key parameters that affect performance, such as set
size, transaction read/write ratio. inerarrival time, and the database size.

In a multiversion database system, each data object consists of a number of consecutive
versions. The objective of using multiple versions is to increase the degree of concurrency and to
reduce the possibility of rejecting user requests by providing a succession of views of data
objects. One of the reasons for rejecting a user request is that its operations cannot be serviced by
the system. For example, a read operation has to be rejected if the value of data object it was
supposed to read has already beca overwritten by some other user request. Such rejections can be
avoided by keeping old versions of each data object so that an appropriate old value can be given
to a tardy read operation. In a system with multiple versions of data, each write operation on a
data object produces a new version instead of overwriting it. Hence, for each mad operation. the
system selects an appropriate version to read, enjoying the flexibility in controlling the order of
read and write operations. When a new version is created, it is uncerified. Uncertified versions
ae prohibited from being read by other transactions to guarantee cascaded-abort free[7]. A
version is certified at the commit time of the transaction that generated the version. The

DEFINITION MODULE Transport.

FROM SYSTEM IMPORT BYTE, ADDRESS;
FROM Ports IMPORT PortTag;

* PROCEDURE Send(pt: PortTag; VAR mess: ARRAY OF BYTE);
(This Send is the highest-level, the transaction's interface.
(* Send inverts PortTag to <processor number, Port number>.)
(If the processor number is different from the sender's.
(Physical level Send is called, which sends to a different site.

PROCEDURE Receive(pt: PortTag) : ADDRESS;
(This routine is called by the destination process.
(If the message has not arrived at the port associated with the PortTag,
(the destination process will be blocked. 5)

(When a message arrives at that port, this routine returns *)
(the address of the message.

* PROCEDURE NonblockReceive(pt: PonTag): ADDRESS;
(This routine is a non-blocking version of the Receive explained above.
(The destination process is not blocked if there is no message.

END Transport.

* Fig. 6. Transport Module

- 44 -

0 _

multlve .n dgabas system we have implemented is based on timestamp orderng. Each data
object is repuunad as a US of versons. and each version is associated with timestamps for its

* creation W and latest rfad. and a valid bit to specify whether die version is Certified.

Eh Mmuaction consists of read and write requests for data objects. Read requests ame
never rejected in a mub.vemon database system if all the versions are retained. A mad operation
does not necessarily read tde latest committed version of a data object A read request is
transformed to a version-read operation by selecting an appropriate version to read. The
timesramp of a read request is compared with the write-timestamp of the highest available
version. When a read request with tmestamp T is sent to the Resource Manager, the version of a
data object with the largest timestamp less than T is selected as the value to be returned. The
timestamp of a write request is compared with the read timestamp of the highest version of the
data object. A new version with the timestamp greater than the remad-timestamp of the highest
certified version is built on the upper level, with the valid bit reset to indicate that the new version
is not certified yet. In order to simplify the concurrency control mechanism, we allow only one
temporary version for each data object. Inserting a new version in the middle of existing valid
versions is not allowed.

The experiment was conducted to measure the average response time and the number of
aborts for a group of transactions runnLig on a multiversion database system and its
corresponding single-version system. Two groups of transactions with different characteristics
(e.g., type and number of access to data objects) were executed concurrently. The objective was

0 to study the sensitivity of key parameters on those two performance measures. The details of this
study are given in (8]. Here we present our findings briefly.

Performance is highly dependent on the set size of transactions. As shown in Figure 7, a
multiversion database system outperforms the corresponding single-version system for the type
of workload under which they ar expected to be beneficial: a mix of small update transactions
and larger read-only transactions. The reason for this is that. in a multiversion database system, a
read requests have higher priority than the write requests; whereas the priority for read requests is
not provided in a single-version system. Therefore, in a single-version system, the probability of
rejecting a read request is equal to that uf a write request. The experiment shows that a single-
version database system outperforms its multiversion counterpart for a different transaction mix.

It was observed that the performance of a multiversion system in terms of the number of
aborts is better than its single-version counterpart for a mix of small update transactions and
larger read-only transactions. Similar experiments have been performed by changing the database
size and the mean inerarrival time of transactions. It was found, however, that the main result
remains the same. From these experiments, it becomes clear that among the four variables we
studied, the set-size of transactions is the most sensitive parameter for determining the
performance of a multiversion database system. This experiment demonstrates the expressive
power and performance evaluation capability of the StarLite prototyping environment.

6. Summary
The StarLite system is a prototyping environment that supports the investigation of the

properties of application as well as system software: operating systems, database systems, and
* communication networks. The benefits of real-time software development in a prototyping

environment are many-fold: 1) errors are reproducible, 2) design alternatives can be evaluated in
a uniform environment, 3) target hardware performance can be scaled, 4) software modules can
be dynamically restarted without reloading, and 5) software and experimental results can be
easily shared with researchers at different institutions.

The StarLite system supports an "open" systems architecture that allows the application
* engineer to exercise control over design decisions at every level of the system hierarchy. Not only

- 45 -

is te system fmcimuly useful a many different interface levels, but also the implementations
beh nd the ninrfac. can be modified to address application reUirements. Furthermore, the
sysmut cam be easily tailored to different experimentai ruiremems. The implementation is
object-o$Am in order to support experimention.

ma Stagiu system has been operational for a year. It is being used to develop operating
systems. distributed database systems, and new network protocols. The architecture has been the
"glue" that has enabled the other pieces of the environment to be put together in a way that
maximizes a researcher's productivity.

While the initial version of the environment executes as a single UNIX process, future
versions could take excellent advantage of both load balancing to distribute a running pwtotype
across a number of machines and of multiprocessor support, such as is found in Mach or Tas.

7. Acknowledgements
The StarLite project is supported by grants of equipment and software from Modula

Corporation. The project is funed by the Army Research Office Contract No. DAALO387-K-
090, by the Office of Naval Research Contract No. N00014-86-K-0245, and by EBM Corporation
under University Agreement WF- 159679.

@

- 46 -

.... S. .., m n mu m m mII

a sngle-version

500- a mult-version

400-
Average

* response
time 300-

200-

100- 1
10 20 30 40 50 60 70 80 90 100

of transactions

PARAMETERS
Group I : Setsize = 10, Type - READ-only, Transaction Ratio = 80%
Group 2: Setsize = 2, Type = WRITE-only, Transaction Ratio = 20%

80- s single-version

a multi-version

60-

of
abortions 40 -

20-

0-
10 20 30 40 50 60 70 80 90 100

of transactions

PARAMETERS
Group I : Setsize = 2, Type = READ-only, Transaction Ratio = 20%
Group 2: Setsize = 10, Type = WRITE-only, Transaction Ratio = 80%

Fig. 6. Performance of Multi-version and Single-version Systems

47-

0 I I

• I

References

(1) Whi N., The Persnal Computer Lilith, ETH Zich, Insttut fur Lnormatk Tenical

Report 40, (April 1981).

(2) Wolfon. 0.. The Overhead of Locking (and Commit) Protocols in Distributed Databases,
ACM Trans. Database Systems 12, 3 (Sept. 1987), 453-471.

(3) Can= M.D. et at, A Virtual Machim Emulator for Performance Evaluation,
CommUicanions ofILheACM23, 2 (Feb. 1980), 71-80.

(4) Wirth, N., Microprocessor Architectures: A Comparison Based on Code Generarion by
Compiler, Convnwu1catons of the ACM 29, 10 (Oct. 1986), 978-994.

(5) Rovner, P.. Extending Modula-2 To Build Large, Integrated Systems, IEEE Software 3, 6
(Nov. 1986), 46-57.

(6) Son. S., A Message-Based Approach to Distributed Database Prototypin!, F#th IEEE
Workshop on Real-Time Software and Operaing Systems, Washington. DC, (May 1988),
71-74.

(7) Bernstein, P., V. Hadzilacos, and N. Goodman, Concurrency Control and recovery in
Database Systems, Addison Wesley, 1987.

(8) Son. S. and Y. Kim, A Prototyping Environment for Distributed Database Systems,
Technical Report TR-88-20, Dept. of Computer Science, University of Virginia, (August
1988).

- 48 -

iSin l]I l nllln l iiiiiU

* APPENDIX IV

AN INTRODUCTION TO MODULA-2

04

.0

AN INTRODUCTION TO MODULA-2
For

Pascal Users

1.0 A Comparison of Pascal and Modula-2 important values for these types are as follows:

Modula-2(l,21 grew out of a practical need MIN() MAX()
for a general, efficiently implementable, sys- INTEGER -32768 32768
tems programming language. Its ancestors are CARDINAL 0 65535
Pascal[3] and Modula(4]. From the latter, it has LONGINT -2147483648 2147483647
inherited the name, the important module con- REAL -I.OE-35 L.OE+35
cept. and a systematic, modern syntax; from
Pascal, most of the rest. This includes in particu- AdecimalLONGLNTconstantisdifferentfrom
lar the data structures, i.e. arrays, records, vari- an INTEGER in that it must have a "D" following
ant records, sets, and pointers. Sructured state- the last digit. Even a very large number must have
ments include the familiar IF, CASE, REPEAT, the D. For an octal or hexadecimal LONGINT,
WHIME, FOR, and WITH statements. the value of the number must either be too large

This Report reviews the differences between for an integer or it must have enough leading

Pascal and Modula-2. It is not intended to teach zeroes to make the number at least six digits

you how to program in Modula- 2. For that purpose, long.

the definitions by Wirth(l, 21 should be consulted. Examples:
* The implementation assumes that the target com-

puter uses byte-addressing and has a 16-bit word 1980 decimal
size. 3764B octal (denoted by the trailing "B")

OCADH hexadeci'nal (denoted by the mailing "H")
1.1 Identifiers CADH an identifier, not a number

Identifiers are defined the same as in Pascal. 48H hexadecimal, leading zero is not required
* 236713D decimal LONG'INT (denoted by the railing

Modula-2, however, is case sensitive. For ex- "D')
ample, the keyword "IF" is only recognized in its all 356165B octal LONGINT
caps form. 000121B octal LONGINT with leading zeroes

36FA51H hexadecimal LONGINT
Examples: 000029H hexadecimal LONGINT with leading zeroes

x scan strMod firstLettr testl REAL numbers are supported in Modula-2 in

1.2 Numbers precisely the same manner as Pascal. All REAL
numbers must have a decimal point and must

The Pascal number format is expanded to allow start with a digit; although, digits are not re-
* octal and hexadecimal constants to be expressed. quired in the fraction. An exponent field is also

Furthermore, the type CARDINAL is added to ex- supported, but is optional.
plicitly represent unsigned, 16-bit integers, andLONGENT is provided for 32-bit integers. Some Following the fraction portion of the REAL

number, an "E" must precede the exponent. The

so-
I
I O

|~~~~~~~~~~~ 50m mnnmn-mlllll lIImnnnmusma,

xonent has a range from -35 to 35. IV unv as idenifier. Ti Modula-2 symbols, which
plus("+")cabeplacedonpositveexponentsasan differ from Pascal's, are listed sepaly.
optim. Symbols That Are The Same As Pascal
Examples: + . /

5.32 typiea d ; (R EA
433. LEAL without frtion potion - < < < >

3.34E.22 REAL with negative exponent ARRAY83MMI REAL with pitive exponent : ANARA
23E22 &W apoitive exponet BEGIN CASE CONST

DIV DO ELSE
1.3 Characters and strings END FALSE FOR

FORWARD [F
Both the double quote character C') and single IN MOD NIL

quote (') may be used as quote marks. However. the NOT OF OR
0 opening and closing marks must be the same PROCEDURE RECORD

character, and this character cannot occur REPEAT SET THEN
within the sting. A string must not extend over TO TRUE TYPE
the end of a line. A string, consisting of a single. UNTIL VAR WHILE
character, is of type CHAR; a string consisting WITH

* of n>l characters is of type Symbols Deleted From Pascal

ARRAY [0..n-l] OF CHAR.

downto replaced with a BY clause.
By convention, many of the library modules file 1/0 was deleted from Pascal in fa-

use the null character, ASCII code 0, to delimit the vor of services provided by I/O
- end of a stuing. The storage for constant strings modules.

ends with the null automatically. Any string that function PROCEDURE is used instead.
the user creates should end with the null in order to goto, label replaced by the LOOP statement.
work properly with string functions, packed the only choice in Modula-2.

There is also a notation to represent characters program replaced by MODULE.
* that are not in the language's character set. A

sequence of digits terminated with a "C" is inter- Symbols In Modula-2 But Not Pascal

preted as an octal value of type CHAR. For ex- I # - BY
ample, "123C" has the same value and type as DEFINITION ELSIT
"CHAR(123B)". EXIT EXPORT
Examples: FROM IMPLEMENTATION

Examples: IMPORT LOOP
"Don' W23C "Modula' MODULE POINTER
"Don't Wonry' *a "quoted" word' PROC QUALIFIED

RETURN
* 1.4 Operators, delimiters, and comments

Operators and delimiters are the special Comments may be inserted between any two
characters, character pairs, or reserved words symbols in a program. A comment is an arbitrary
listed below. The reserved words consist exclu- character sequence opened by the bracket"(*" and

0 sively of capital letters and MUST NOT be used closed by ")". Comments may be nested and they

51-

0

do not affect the meaning of a program. The nesting BOOLEAN A variable of this type assumes
allows arbiuray setions of a prmtn to be com- the mtl values TRUE or FALSE.mead out for tinS purposes. These are the only values of this type,
13 which is predeclared as the

enumerationBOOLEAN=(pAL.SETRU).

As in Pascal evey identifier must be declared CHAR A variable of this type assumes
within a block. Ablockin Modula-2,however, can as values the characters of the ASCII
be delimited by either the MODULE or PROCE- character set.
DURE keywonL Unlike Pascal, the declarations BITSET A variable of this type assumes
within a block can occur in any order and can be as values any subset of the
repeated. Another difference is that constant ex- SET OF [0 .. WordSize. 1].
pressions can be used wherever a constant is a- LONGINT A variable of this types assumes
lowed. Finally, since this implementation is a one- the integer values between MN
pass compiler, ALL SYMBOLS MUST BE (LONGINT) and MAX (LONGENT).
DECLARED BEFORE USE. REAL This type of variable can hold

1.5.1 Constant declarations the fractional expressions between
MIN (REAL) and MAX (REAL).

Constant declarations are the same as Pascal, PROC This type is a paramteriess
except for the use of constant expressions. procedure.

* Examples: The type of the bounds for a subrange type, T,

CONST N = 10;, (N stands for 10 is called the base type of the subrange and all op.
LIMIT = 2N-; (LMTr is for 199 erators applicable to operands of type T are also ap.
ODDS = BITSET(1, 3, 5 plicable to variables declared with the subrangetype name. However, a value to be assigned to a

1.5.2 Type declarations variable of a subrange type must lie within the

The simple types in Modula-2 consist of enu- specified interval. If the lower bound is a non-
mention types, subrange types, or type identifiers, negative integer, the base type of the subrange is

term taken to be CARDINAL; if it is a negative integer,which may be qualified. In this context, the tiNEE.mh nydifrnefr Psa
"qualified" means preceded by a module identifier it es To e on d srane type s
and a period. This option is not present in Pascal.
The qualification may be necessary to refer to a the requirement that a subrange declaration be
type that is in a QUALIFIED EXPORT list or the bkete
definition module of another module. The follow-

* ing simple types are denoted by standard identifi- Examples:
ers:

TYPE New Int = INTEGER:
INTEGER A variable of type INTEGER Color = (RED. BLUE. GREEN):

assumes as values the integers between Cold = (-463.. 581; (no brackets in Pascal "MIN (INTEGER) and MAX (eIsE- Pnew = POINTER TO ModuleName.New;MNR. (d(* a qualified reference ")
GER). Range = (BLUE..GREEN]; (0 a subrange of Color =

CARDINAL A variable of type CARDINAL Letter = ["a".. "z'"; (I the letters "a" to -z" "
assumes as values the integers between
0 and MAX (CARDINAL). Modula-2 handles type equivalence much more

- 52 -

I

sticzy than PscaL In scaL it is perfectly lel U "E" and 1". TheelemeMt desipaon can be
to assin vuibl esof twodiffaent typeS 5 long" nitants or expressions. Sets Ire also restricted in

the two type-0e allik. Two types look alike ifsize to WordSize elements. This must be a

the cotpoempmofthtwo declaadons match subrmnge of the integers between 0 and Words ize.
exactly. Wij MadoWa., twosepattypescannot 1, or a subrange of an enumeration type with at

be asiped w sub odw no mater how closely most WordSize values. As a final point, a set

their declarados tcti. constant may be preceded by a type name to

Example: document the interpretation of the element list.

ExVAR: Examples:
a: ARRAY (0..21 OF' DMEGM4
b: ARRAY [0.21 OF INT.GER TYPE sCokw' . SET OF Color

BJTSET • SET OF (0 .. WordSize-1];

a:b; NOt This is allowed in Pasca but in

Modula-2, a and b are vanables of Set CoMtants

two different types. {) the empty set can="m

1.52.1 ARRAY, SET, and POINTER types (BLU RE the unm oto olor

Ile arry and pointer types are interpreted and BITSET(0..4, 61 includes bits 0, 1.2, 3, 4, 6
referenced as in Pascal. The array declaration is a
bit different in that the bounds list is defined as a list 1.5.2.2 Record types
of simple type names, enumerations, or subranges. The syntax for the Modula-2 record type is
The pointer declaration is more verbose than in similar to the Pascal notation, except for the format
Pascal. The purpose is to make the declaration of the variant parts. In Pascal, the variant list is
"stand out" as the "A", used in Pascal, is easily parenthesized. In Modula-2, the variant pat is

overlooked. As in Pascal, NIL is used to specify implemented as CASE selection. Each sub-decla-
. ration (case) in a variant part is delimited by a "I".

One of the exceptions to the "declare before use" Also, an ELSE option is provided to denote "all

rule concerns pointer types. In the case "PONTER other cases". Another difference is that variant

TO T", T is automatically treated as a forward declarations can occur anywhere in a record type
reference if it has not already been defined. declaration, whereas in Pascal, variants are re-

stricted to the end of a record declaration.
Examples:i Example:

TYPE DemoT
• ARRAY CHAR, (RED, BLUE, GREEN) OF CHAR: TYPE Ex z RECORD

Array = ARRAY [1 .. 91. [12.. 347] OF CARDINAL. x.y: BrISET:
pChar POINTETO CHAR. CASE tag0 :Color OF (' tago selects the case)• PONTERTO CAR;RED. GREEN: a.b : CHAR

pLinks a= POfrl TO Links; (* forward reference A) I BLUE : : INTEGER

Links a ARRAY [1..4] OF pLinks; (0 dfined *) (" separates variant pars)
I ~END: (as)

* VAR x: Demo; (* referenced with x'j', BLUE]) z: CD[NAL r:

CASE tagi : BOOLEAN OF
Sets ae declared as in Pascal but the syntax for TRUE. uv : INTEGER

a reference to a set constant is different." I" and")" ELSE
are used to bracket set constants, whereas Pascal rs: CARDINAL (* when tag iO'TRuE

END; (case)

53-

0

END E 0); body. The heading specifies the procedure identi-
fier and the formal parameters. The block contains

Ile exapl contains two variant sections. The declarations and statements. The procedure identi-
cane witn the first varian is sel by the value fieris required at the end of a procedure declaration
of "MWo", the cM wibin the second variant by to document which procedure is being "closed".
"tagl". Remember tha, as in Pascal, the variant The primary differences from Pascal are procedure
parts of each case overlay each other in storage- variables, the deletion of the "function" keyword.
1.3.2.3 Procedure types and the addition of the RETURN statement. Rather

than assigning to the procedure identifier to set a
* Unlike Pascal, Modula-2 permits variables of return value as in Pascal, a RETURN statement

procedure type that can have procedure names as must be used.
values. This feature can be useful when the func-
tion to be performed is to be selected at nrime. (ConE I Type I Var I Pocedure IModue Declaraon)
Since the procedure type is generic, that is, it stands [BEGIN

* • for an arbitrary number of procedure names, the SuuaentSequenc]
identifiers in the formal parameter list are omitted; ENDidentifier
only the type names appear. For procedure vari-
ables without a formal parameter list, the type ..C [Mecto ; ectn) quiedlde]
PROC may be used.

• Examples: FPSection =
[VAR] iderniierLisz ":' [ARRAY OF) qualLfieddem

prMax = PROCEDURE(INTEGER. INTEGER) qualifiedldent = identifier ("." identifier)
: INTEGER.

prSecToDae =PROCEDURE(VAR Seconds): Dat: The use of a FORWARD qualifier in place of a
• parLess = PROC; procedure body allows a procedure to be refer-

variables are initalized by the a enced before its declaration. The FORWARD im-
Procedure variables or mediately follows the procedure heading. When

procedure constats, which result from procedure the actual procedure is declared, however, the full
rdeclarations t formal parameter list must be repeated.

1.5.3 Variable declarations Example:
PROCEDURE foo (x : CARDINAL);

Variable declarations serve to introduce vari- FORWARD; (0 replaces body ")
ables and associate each with a unique identifier

* and a fixed data type. Variables whose identifiers PROCEDURE ip-
appear in the same list all obtain the same type. BEGIN

foo (14): ('use before declaration)
Examples: END ip;

VAR ij: CARDINAL; PROCEDURE foo (x: CARDINAL);
* a : ARRAY Index OF CHAR: BEGIN

InOuLWrnteCard (x,4);
1.5.4 Procedure declarations END foo:

Procedure declarations consist of a procedure 1.5.4.1 Formal parameters
heading and a block that is called the procedure

4 .. .

- 54 -

,0 I zI

Formal pmmeters are idenifers that denote N-1. wheun N is the number of elemenuL If the
actual pmatm specified in the procedure call initial amy is multidimensional, it is mapped onto
As in PLw. both value and vriable (VAR) pan- the argument with the last subrange listed first
meters mpovided. Formal parameters are local That is if the array's index bounds is defined as
to the poce ure Le. jr scope of reference is the [0..2,0..2], the argument will be mapped

text theoies procedure decla- [O,O1->10, (0,1]- 01X, 0,2J->(2, [1,01->(3), etc.raion The "HIGH" standard function can be used to de.
termine "N-i". The example illusuates the use of

Example: this feature in an error message routine.
(0 0md a ring odigit fom the ipu device. *) PROCEDURE enwa VAR mem :ARRAY OF CHAR):(0 Re Ca in ofvale a the digit is retured. ") (* Notice: the bound for "mesge" is omited e)

(Cnvaron mas when a digit is read.) VAR noChr: CARDINAL.
('Convioen stos when a non-digit is read.) BEGIN

PROCEDURE RadCu : CARDINAL; WriteLn(sip to new line
* VAR i: CARDINAL; ch : CHAR FOR nChr := 0 TO HIGH(meage)DO

BEGIN (0 no. r in messae ")
REPEAT (skip characters until a digit is mad ") Wrie(mesage(nChar]); (write do, message ")

InOuLtRed(ch); END; (*for*)
UNTL(cb"0") AND (ch<="9") WriteLn (' skip to new lie ")iUT := , END erron.

REPEAT (0 accumulate the number in e")
i:= 1*i,(OR(ch)-ORD('V""); error("Shor."). a M U M").
InOu,.Read(ch). errorClonges one"):

UNTIL (ch<'O") OR (ch>"9");
RETURN 4 The "open" array feature also makes it easy to

END ReadCard create libraries of useful routines that can operate
over a wide range of input values.

The "ReadCard" routine ses the type transfer

function, ORD, to manipulate the numeric value of 1.5.4.2 Standard procedures
the input character. The standard procedures are as follows:

Any function with an empty parameter list, such ABS(x) absolute value; result Type=argType
as "ReadCard", must be declared and referenced CAP(ch) capitalize ch
with the "0" suffix. The goal is to create a visual CHR(x) the character with ordinal number x
distinction between a reference to a procedure FLOAT() converts x to a REAL value
variable and a procedure call FIGH(x) the upper bound of array x

The specification of "open" array parameters MIN(x) the minimum value for type x
represents a significant improvement over the MAX(x) the maximum value for type x
static limitations of Pascal. If the parameter is an ODD(x) x MOD 2 <> 0
"open" array, the form ORD(x) ordinal number of x in its

ARRAY OF Type Senumeration
ySIZE the number of words in type x

must be used, where the specification of the actual TRUNC(x) the LONGINT value of a REAL
index bounds is omitted. "Type" must be compat- or the INTEGER value of a
ible with the element type of the actual array, and LONGINT
the index ranges are mapped onto the integers 0 to LONG(x) the LONGINT value of an

INTEGER or CARDINAL x.

• . *, '

- 55 -

0

VAL(T, x) is the value with ordinal number x Type transfer functions ae different from con-
and type T version functions in that they do not change any

VAL(T, ORD(x)),x, if x is of type T bits. Type transfer functions merely convert the
argument into a new type at compile time. Of

DEC(x); x : X-I; course, the new type must have the exact size as the
DEC(x, n); x := x-w; old. ORD, for example, performs a dual role; it is
EXCL(s, i); s :_ s-fi); remove i from set s the conversion function mentioned above, and it
HALT; terminate program execution also gives the ordinal value of its argument in the
INC(x); x := x+l; argument's enumeration. VAL is the inverse of
INC(x, n); x :- x+n; this. It takes the enumeration's type name and its
INCL(s. i); s := s+(i): include element i in s ordinal value and makes them into the

enumeration's type. The other way to transfer types
Examples: is to use the type name as a function. Again, the two

types must be of equal size. Type transfer between
0 ABS(-5) = 5 ODD(3) = TRUE CARDINAL and INTEGER is automatic on as-

CHR(65) M 'A' ORD('A') = 65 signment.
CAP('a')- 'A' VAL(Color, 0) = RED Examples:

x:=8; y:=(0,4,5); TYPE
An = ARRAY (0.31 OF CARDINAL,

DEC(x); x = 7 DEC(x, 5); x =3 Rec = RECORD
m : LONGIhlT;

INC(x); x = 9 INC(x, 5); x = 13 m: LONGINT;

EXCL(y, 4); y = (0,5) E.ND:

INCL(y, 6); y = (0,4.5,6) VAR
0 c: CARDINAL;

1.5.4.3 Conversion and Type transfer functions i: INEGER:
1: LONGINT;

Conversion functions perform the useful serv- ch: CHAR:
ice of convering one number type into another by r: REAL:

actually changing the argument's bit values. a: Am

0 FLOAT takes an INTEGER, CARDINAL, or r: Rec;

LONGNT value and converts it to REAL; r := FLOAT(42); (r = 42.0)
FLOATs inverse, TRUNC, takes a REAL argu. I:= TRUNC(r). (I = 42D)
ment and converts it into LONGINT. TRUNC also c:= TRUNC(I): (c =42 -)
Provides the more docile but no less important role 1:= LONG(c) (* I = 42D"
prvie i := TRtJNCMl) (i = 42)* of converting LONGINT values into INTEGER, i:=(i = -65)
which involves the removal of the high-order bits. ch := CHR(i); (0 ch = 'A')

1: 4: (ac=14 a)

The other conversion functions perform similar c:= 14 (*C=14
i:= C; (*i= 14

bit additions or removals. LONG takes an INTE c := i; (* c = 14 -)
GER or CARDINAL value and makes it LONG- a := Arr(r); (" r is made into the array "
INT. CHR removes the high byte of an INTEGER
or CARDINAL value to make it an ASCII value of 1.6 Expressions
type CHAR. ORD, the inverse of CHR, adds a high The following table defines the interpretation of
byte of zeroes back on to create a CARDINAL. each operator.

, d -e . .. v , n . -'
-56 -

Operator M1.7 Statements
+ nuW addition The major difference in statement smx-cre
- iu subuctdon from Pascal involves the elimination of the disonc-
* inaslw multiplication non between simple and compound statements. In

DIV inuger division other words, "BEGIN S (; S) END" has been
MOD integer modulus deleted by making every strctured statement a

OR compound statement. REPEAT. for example, wasalready in this form and required no change. The
p OR q means "if p then TRUE, otherwise q" advantage of the new format is that statements can

AND& be arbitarily added without worrying aboutmeans "if p then q, otherwise FALSE" whether a "BEGIN-END" is necessary. To facili-tate this property, we recommend that every state-
NOT- ment be terminated with a semicolon. Except for- p means "f p then FALSE, otherwise TRUE' the compound statement convention, the followingstatements are similar to the syntax used in Pascal.

The WITH statement is resticted to a single record
= compare for equality selector.
0 * unequal
< less ForStamment =
<= less than or a e FOR idenfier ":=" expression TO expression
> greaterCsI DO
>- greater than or equal StatementSequence

END (0 FOR ")
IN contained in, set membership test
+ x IN (sI + s2) iff (x IN sl) OR (x IN s2) RepeatStatement=

x IN (sl -s2) iff(x IN sl) & - (x IN s2) REPEAT
x IN (sl * s2) iff(x IN s) & (x IN s2) StatmentSequence

/ x IN (sl /s2) iff (x IN sl) <> (x IN s2) UNT exprsmn
<= p <= q is TRUE if p is a proper subset of q
>= p >= q is TRUE if q is a proper subset of p WhileStatement =

WHILE expression DOExamples: StatementSequence
END (0 WHILE ")

3+4 = 7 3".4fi
7 DV4= 1 3*4 12 WithSmement=
7 MOD 4 = 3 TRUE OR FALSE TRUE
TRUE AND FALSE = FALSE WITH recordReference DO
NOT TRUE = FALSE StatementSequence
3 = 4 is FALSE 304 = TRUE END (- WITH")
3 < 4 = TRUE 3 <= 4 is TRUE
3 4 FALSE 5 >= 4 is TRE The Modula-2, FOR loop uses the optional BY
(4,5) (47) = (5) (4,5) * (4,7) = (4) clause to specify the step value to be used in each
(4,5) / (4,7) = (5,7) (4.5) <= (4,5,7) = TRUE iteration. The step must be a constant. If the step is
(4.5,7) >a (4.5) = TRUE positive, the loop counts up to the TO value. If the

step is negative, the loop counts down to the TO

5
- 57 -

0

value. The maximum number of cases Per case statement
is 256.

Examples: Ca. tmet

FOR i . 3 TO 7 DO i-3.4.6.7 CASE expession OF
FRi.13TO7BY2D0 i3.5,7 can
FOR I -= 7 TO I BY -2 DO i=7,53,1 (.jar=)

(ELSE
1.7.1 Assignments and type compatibility SttemenSequence]

END (= CASE ")
The assignment serves to replace the current

value of a variable by a new value indicated by an Case a
expression. The assignment operator is written [Caseabels ('. Case.Labels) "
":a" and is pronounced as becomes. StatemenSeiuence]

assignment = CaseLabels =

vaniableReference ":=" expression ConstExpression [".." ConstExpnionj

The type of the variable must be assignment Example:
compatible with the type of the expression. Oper- (0 kead a stuing of digits from the input device.)
ands are said to be assignment compatible, if either ("," and "." are allowed in the mn for readability. s)
they are compatible, or both are of type INTEGER (T Cadinal value of the digits is renuned. ")
or CARDINAL or subranges with base types (Conversion stops when a digit is read.)

INTEER o CADINA. Tw oprand of ype (0 Converson stops when a non-digit is read.)
INTEGERorCARDINAL. Two operands of types PROCEDURE ReadCardO: CARDINAL;
TO and T1 are compatible if either TI = TO, or TI VAR i: CARDINAL;
is a subrange of TO, or TO is a subrange of T1, or if ch: CHAR.
TO and Ti are overlapping subranges of the same BEGIN
base type. In the case of overlapping subranges, REPEAT (0 skip characters until a digit is read)InOut.Read(ch);
runtime checks for range violations may be neces- U Inutl (ch>=") AND (ch<");

sary to detect errors. i:= 0:
1.7.2 CASE statement LOOP (0 accumulaue the number in '"")

CASE ch OF
The CASE statement in Modula-2 is somewhat 0..9: i := 0i+(ORD(ch)-ORDC0'"))

different than the Pascal version. First subrange (ignore "," and "." 0)
ELSE (stop at non-digit e)

constants are allowed as a shorthand notation for a EMT: (0 loop -)
range of case labels. END; (- case w)

InOuLRead(ch);
Pascal Modula-2 END: (0 loop .)
3,4,5,6,7 3..7 RETURN i:

END ReadCard
The subrange notation saves typing. Further-

more, constant expressions can also be used as case 1.7.3 IF statement
* labels. Thus, defined constants can be used to par- The IF statement has been modified by the

ameterize selection. Finally, the "I'" is used to sepa- addition of an ELSIF clause whose purpose is to
rate cases and an ELSE clause is adopted as a provide a shorthand notation for tests that, in
shorthand for the label standing forallother labels. Pascal. would require multiple IF statements.
No value may occur more than once as a case label.

IfStatement =

- 58 -

(ELM qnmi TIH ('0M or mote PIOEDURE semtih(lit pList
S.m m . VAR atbuW: Atribute): BOOLEAN;

* (*too m one ELSE *) (check to see if "atibute" i in "U")
SmmuSeeel BEGlN4

END (*' IWF) LOOP (* search singly-linked-li)
1F is a NIL THEN

Exanple: EXT:
ELSIF attribute a lisatri THEN

Pegcal Modaia-2 RETURN TRUE; (* atibe i W the ist 0)
* ifx= I bm IFx ITHEN END; (0IF0)

y : 2 y :: 2; list:= ULA.lin; (* advance to next element)
elfsifxS9 tha ELSIFx=9 THEN END, (0LOOP*)

y:=3 y:= 3; R FALSE; (0 end of listnt here)
else ELSE END search

0 y := 6y :a 6;

END: (*) The EXTr statement specifies temination of
the loop and, when executed, causes execution to

The expressions following the symbols IF and continue at the statement following the loop state-
E1SIF are of type BOOLEAN. They are evaluated ment. An EXT statement may terminate a LOOP
in the sequence of their occurrence until one yields even if it is nested within other su'uctned state.

* the value TRUE. Then, the associated statement ments. Only the closest, enclosing LOOP is termi-
sequence is executed and the IF terminated. If an nated.
ELSE clause is present, it is executed if and only if
all Boolean expressions yielded the value FALSE, 1.7.5 RETURN statement

much like the ELSE in the CASE construct. The RETURN statement provides a convenient

1.7.4 LOOP and EXIT statements way to leave a procedure as soon as an exit condi-
tion becomes true. In Pascal, a procedure can only

A loop statement specifies the continuous exe- be terminated by executing the "end" of the block,
cuton of a statement sequence. This statement is which is often an inconvenience.
used quite frequently in concurrent algorithms

* because, unlike sequential programs, termination RETURN [expression]
is often undesirable. Imagine what would happen if In Modula-2, the RETURN statement serves the
an operating system halted after 10,000 iterations. dual role of specifying the result for a function and

LoopSwmment = of returning to the caller for both subroutines and
LOOP functions. For a subroutine, the expression must be

SStatementSequence omitted. For a function, it must be present. The
END (' LOOP ") expression. representing the returned value, must

ExitStatement z EXT match the type specified for a function.

2.0 Programming Conventions
Example- In addition to the indentation conventions used

TYPE pList z POINTER TO List: in the Modula-2 definition, you should try to, and
List = RECORD we will, adhere to the following programming

link: pList; (0 a singly-linked list) conventions. Hopefully, the result will be visually
atnbute: Attribute; (*a list element ") pleasing prograns that are easier to understand due

- 59 -
0

to the presence of syntactc cues. continuation line(s).

2.1 Name and delarations A semicolon follows the last statement in a
Declartions should help document the use of a statement sequence and the last field in a field list.

varable; thus, try to use subrange and enumerated Thepurpose is to make insertions and deletions less

typedcrd inst of INTEGER. Most iden- er-prone.

tifiers should be written in lower case, except for Each DEFINITION module should be com-
the first letter of each new word, that should be mented to describe its general function. Also, each
capitalized. exported procedure should have a brief comment.

line firsdine nextLineOffset In addition, it is advisable to comment VAR para-
meters as "I", "OUT", or "INOUT" to denote the

Capitalize the first letter of type identifiers, presence or absence of side-effects
module names, and the names of exported proce- 2.3 Spaces
dures; capitalize all letters of CONST definitions.
If the name of a constant is several words, just Leave a space after a comma or semicolon and
capitalize the first two letters of the first word(e.g. none before; leave a space before and after a colon.
CHarsPerWord). Try to use full words for all Surround ":=" with spaces. A space should appear
names. However, if space is a problem, the follow- after left-comment and before right comment.
ing shorthand conventions can be used. Don't put spaces inside brackets or parentheses or

Choose a short tag for each basic type that you around single-character operations.
create, e.g. Ln for Line or Buf for Buffer. Use the 3.0 Changes to Modula-2
following prefixes to constuct tags for derived The following list reflects a number of changes
types: to the Modula-2 definition[51. The changes re-

p -pointer to: pBuf = POINTER TO Buf suited from a meeting between Wirth and represen-
i. index for. iLn = index for ARRAY OF Ln tatives of several firms that had implemented
s - set of: sColor=SET OF Color
sr- subrange of: srColoru(BLUE..GREEN] Modula-2.
n - length of: nString=number of characters in 1. All objects declared in a definition module are

exported. The explicit export list is dis-
If you need only one variable of a given type in carded. The definition module may be re-

a scope, use the tag as its name: garded as the implementation module's

buf: Buf separated and extended export list.
DEFINITtION MODUtLE identifier ";"

If you need several names, append modifiers Dimport}
* (avoid simple numbers like 1, 2, etc.): (definion)

bufOld, bufNew, bufAlt: Buf END idenufier

2.2 Layout 2. The syntax of a variant record type declaration

Try to follow the indentation examples in the is changed so that the":" is always required.
Modula-2 definition. Write one statement per line, The presence of the colon makes it evident
unless several simple statements, which together which part was omitted, if any.
perform a single function, will fit on one line. It is CASE [idenufier] ":" qualifiedldent OF
acceptable to put a loop on a single line if it will fit.
If a statement will not fit on a single line, indent the

6

- 60 -

0

record declaration is changed so that either Inc. (1976).

may be empty. The inclusion of the empty (41 Wirth, N., Modula: a language for modular
case ad empty variant allows the insertion multVrogramming. Software-Practice andOf superfluous barssimitr to the insertion of E .t 'nee 7,(1977), 3-35.
superfluous aemicoloas for empty stae *~oe7 17) -S

er s f(51 Wirth, N.. Schemes for multiprogramming
and their implementation in Modula-2. Technical

4. AstringconsistingofNcharacersissaidtohave Report No. 59, Instit fur Informatik der ETH
length N. A string of length 1 is compatible Zurich, (June 1984).
with the type CHAR.

5. The syntax of the subrange type is changed to
allow the specification of an idennfierdesig-
natng the base type of the subrange. Ex-
ample: INTEGER[O .. 99].

6. le syntax of sets is changed to allow expres-
sions as set element selectors.

san (qualifiedIdent] " ([element ("." element) I")"
element a expression [".." expression}

7. The character "-" is a synonym for NOT.

8. The identifiers LONGCARD, LONGINT, and
LONGREAL denote standard types (which
may not be available on some implementa-
cions).

9. The type ADDRESS is compatible with all
pointer types and with either LONGCARD
orLONGNTdependingon the implementa-
tion.

10. The new standard functions MIN and MAX
take as an argument any scalar type, includ-
ing REAL. They stand for the type's mini-
mal/maximal value.

REFERENCES

(11 Wirth, N., Modula-2. Technical Report
No. 36, nstitut fur Informatik der ETH Zurich,
(Dec. 1980).

* (21 Wirth, N., Programming in Modula-2.
Springer-Verlag New York Inc., (1982).

(3] Wirth, N. and K. Jensen.. Pascal user
manual and report. Springer-Verlag New York

1

... ,. .

- 61i -

0

* APPENDIX V

AN INTRODUCTION TO MODULAR PROGRAMMING

- 62 -

0.. . m mmuum u nnlm nn mllmlll n l m l n l n II m I

AN INTRODUCTION TO MODULAR PROGRAMMING

1.0 Introduction users, resulting in top-down decisions, and the
technological constraints imposed by the

Modula-2 was designed to support modular possible execution environments, resulting in

programming. This section outlines the features of bottom-up decisions.

Modula-2 which reflect that goal. Also, the In choosing a modularization for a system, it is
facilities of Modula-2 for systems programming advantageous to impose a hierarchical
are illustrated, organization on the modules. A hierarchical

Many systems today are large programs, structure results when all modules at level i in a

ranging in size from ten thousand to one-half system use only modules at levels lower than i

million lines of code. Obviously, some design for their implementation. A module at level 0 is

guidelines are necessary to managc the complexity implemented without referring to any other
of implementing and maintaining such large modules. The existence of a hierarchical structure
systems. he most successful approach has been to assures us that upper levels can be deleted and
use modular programming techniquesle that arbitrarily rebuilt. This property enhances the

allow one module to be written with little extensibility, or "open"ess, of a system. If "low-

knowledge of the implementation of other modules level" modules were implemented such that they

and that allow modules to be recompiled and depended upon "high-level" modules, a hierarchy

replaced without requiring recompilation of an would not exist and it would be much more difficult

entire system. The expected benefits of modular to delete or update portions of the system.

programming are shortened development time for 2.0 Modular Programming
new products because modules can be
implemented by separate groups, increased
flexibility because the implementation of one The following table illustrates the syntax of a
module can be changed without the need to change compilation unit in Modula-2.
others, and increased comprehensibility because Modula-2 Program Stucture
the system can be studied one module at a time.

In system design, the first step is to partition the CompilauonUnit = Def'mitionModule I
specification into a number of modules with well- (LMPLEMENrA'ION] ProgramModule

defined interfaces. At this point, only the interfaces ProgranModule
are considered, not the module implementations. MODULE idenufier:
Each module should be small and simple enough to Iimport)
be thoroughly understood and well programmed. block identifier
The intention is to describe all "system level"
decisions (i.e. decisions that affect more than one DefinitionModule =

DEFINITION MODULE Ldenufier...
module). The modularizarion must take into import D

* account both the functions to be provided to

- 63 -

0

(do~nidioe} The major difference between the Modula-2ED i . version of the program and its Pascal equivalent
is the IMPORT list and the variety of L/O

* U - wofa iM T endafierLst , procedures. Modula-2 has no builtin 1/0
statements; therefore, all I/O is performed with

ezpa= procedures written in Modula-2. This design
EXPORT [QUALVPD1 !denafierLi. ; decision resulted in a simpler implementation

defwitkm - for the compiler but increased typing for users.
CONST (CowramDeclaranon";"} The IMPORT list is necessary to tel theTYPE (idaif' ["=" type) ";"1 IVAR (VaidabefDeaanon ":" compiler where to find the definitions for the
PROCEDURE idenufier FormaLParameters] ";" "Write" procedures, in this case in module

"InOut", which has been separately compiled.
A program module encapsulates the The IMPORT list also enumerates the symbols

implementation of an abstraction. A compiler, from "InOut" that are required by the "Main"
for example, might have modules for symbol program.
table lookup, reading from the input stream, "InOu" is an example of a low-level module
accumulating tokens, and generating code. that can be used over and over again by high-

To meet our modularity requirements, a level modules. In fact, program modules, such
module must be easily recognized. In addition, as "Main", must always occur at the highest
its function should be easy to determine. This system level as they can only "import"
does not mean examining the listing of the definitions from lower-level modules like
entire module. In fact, for proprietary software, "InOut".
the module listing may not be available. As you If a global variable is not listed in the
will learn in this section, Modula-2 meets, and IMPORT list, it is invisible to the module. Thus.
exceeds, all of our requirements. We start with by examining the interface specification at the
an example of a Modula-2 program module that top of a program module, a user can determine
prints the integers between one and a hundred, what services the module depends on from its
and their squares. environment (useful documentation). Since the

PRINT THE SQUARES OF THE INTEGERS 1.. 100 modularization process starts by defining
module interfaces, the IMPORT list is usually
determined prior to implementation. Any

FROM InOut IMPORT (" Procedures ") symbol that is used by a module and does not
SWriCard. WrieString. Writwa;. appear in the IMPORT list must be declared in

VAR i: [1..1001; the body of the module.

BEGIN If the FROM clause in an IMPORT list is
WrireString("Numbet Number Squared'1; omitted, the list of identifiers must name
WriTOLn. modules, not symbols contained in modules. InWnReCad(i, 4); (aligns number under Ib" T) this case, all of the symbols occurring in the

WninCard(i'i, 16); (* aligns under "S" ") DEFINiTION part of the named modules are made
WnrteLn; (0 writes end-of-line a) available to the program. However, these symbols

END; (* frt) can only be referenced via a qualified name of theEND Main. form Moduleld.Symbolld. The following example

- 64 -

ilustrates the qualified name option. IMPLEMENTATION module for "InOut".

PRINT THE SQUARES OF THE TEjG - 1.. 100 T I DEFIITION MODULE
(* Prtmdea ftnatte LO services for be types o)

MODULE Ma DEFINITION MODULE lnOut;

IMPORT rnO= (ly te module name *PROCEDURE WriCard(x. n: CARDINAL);
VAR i: [1 100; (write cardinal z with (at least) n characters.

BEGIN If n is greater than the number of digits needed,

InOu.Writetrng('Number Number Squared"); blanks are added preceding the number. *)
InOau.Wri1=/ PROCEDURE WriteL 0; (0 terminate the current line ")
FOR i := 1 TO 100 DO PROCEDURE Write(ch:CHAR);

InOut.Wri eCrd(4 4); (* aligns number under "b" ') (" write a single character *)
1nOuLWriteCard(i*i, 16); (S aligns under "S") PROCEDURE WriteSuing(s: ARRAY OF CHAR);
InOuLWriteLn; (writes end-of-line ") (write HIGH(s)+1 characters from s ")

END: (0 for *)
END Main. END InOut.

2.1 DEFINITION modules The full details of types exported from DEFI-

Modula-2 permits the defintuon specifica- NITION modules are visible to importing mod-
tion for a module to be separated from the ules. If an enumeration or record type is ex-

module's implementation. The two parts can be ported. the enumerated constant and field

compiled separately but must, of course, match names are automatically exported as well. This
is termed a transparent export.

with respect to declarations. A DEFINITION
module supports information hiding by elimi- At the other extreme, it is possible to export
nating the implementation code. It is intended to only a type's name. This is referred to as opaque
be standalone documentation for the users of an export. The term "opaque" denotes the hiding of
abstraction. Furthermore, in most Modula-2 the details of a type's implementation from its
implementations, the IMPLEMENTATION part users. An opaque type is declared as follows:
can be recompiled arbitrarily without causing An Opaque Type Declaration
additional recompilarions on the part of its

* users. If a DEFINITION module is recompiled, TYPE identifier,
all modules that refer to it must be recompiiw. In the corresponding IMPLEMENTATION

A DEFINITION module contains only the module, an opaque type can only be declared as
constant, type, variable, and procedure-head- a pointer or a simple type, such as CARDINAL.

* ing declarations that are necessary to use the Instances of opaque types can be used only for
corresponding IMPLEMENTATION module. assignment, comparison, or as arguments to
The interface specification lists the entities that procedures defined in the corresponding IM-
are "export"ed to the outside world by the PLEMENTATION module.
module and any entities from the outside world 2.2 IMPLEMENTATION modules

* that are 'import"ed (used) by the DEFINITION
module. The following example illustrates a A correctly structured module has the prop-
portion of the "InOut" DEFINITION module. erty that its implementation can be changed
Notice that only the procedure headit,.- are without changing the parts of the program out-
given. The procedure bodies are specified in the side the module. This property by itself .ould

65-

0

suffice as a reason to use Modula-2 over PascaL CONST MAxStakSize u 97;TYPE StockType aBOOLEAN;

It is importat todocument the external symbols (*a stck of 97 Boolans-)
that am used in an I FLEMENTATION o2Odule.
Notice that the DIMPORT List for the DEMNMTON The advantage of this parameterization is
and 3MPLEMENTATION part need not match. that the stack module takes on a life of its own,
Typically, the iMPLENMENTATION module's list independent of any particular program. Any
will be longer as greater detail is necessary to im- algorithm that needs a stack can "check out"
plement an abstraction as opposed to specifying it. this module from a system library, read its speci-

Every BMPLEM.NTATION module con- fication, set up the parameters, and not worry
tains an initialization part, following the about coding it. Notice that, unlike procedureparameters, the imported type and constant are
"BEGIN", that is used to put the module into a
consistent state before program execution evaluated and have their effect only at compile
starts. The initialization code is executed by the time.

runtime system before the main program be- A Stack Manipulation Example
gins. Therefore, it is unwise to put infinite loops (This module implemens a single stk togeher with the
in an initialization part. operators that manipulate it. To use this module, create

The next example illustrates the use of a a Parameters module that defines MAxStockSize. which
DEFINITION and IMPLEMENTATION module is the number of elements desired, and StackType. ")* DEP ON MODULE StackManipuhlnoag
to define a stack manipulation utility. The pro-

gram implements a single stack that has its size FROM Parameters IMPORT
and its element's type chosen by its users. In the ('Type') StackType; (* restricted to a simple type ')
example, "stack" and "iStack" are not exported PROCEDURE Push(stacklemen: StakType)
because they re implementation details. By BOOLEAN:
"hiding" them, the programmer responsible for (* adds to top; returns FALSE if a push doesn't succeed -)
maintaining the module can continue to refine PROCEDURE Pop(VAR stackElement: StackType)
and improve its implementation without affect- :BOOLEAN-
ing any of its users. For instance, the stack could (* removes from top, returns FALSE if stack was empty -)PROCEDURE SetErnpty0;
be implemented as a linked list rather than an sets the stack to empty)

array.

In addition to serving as a convenient organ- END StackManipulaLion.
izational tool, the module also provides an in-
formation-hiding and parameterization service. IMPLEMENTATION MODULE StackManipuladon;

• The user of the module can call "Push",
"SetEmpty" and "Pop", but all implementation (' """ "INTERFACE SPECIFICATION-"*-- -)
details are hidden. In the example. the module FROM Parameters IMPORT

('Const*) MAxStackSize, (Tvpe) StackType:
imports the type of the stack's elements and the (* **'********DECLARATIONS"----=.,--..... a)
size of the stack. Thus, this module could be VAR

* used to create the following varieties of stacks. stack: ARRAY PI .. MAxStackSize] OF StackType;
iSLack: [1 .. MAxStackSize*1];

Possible Content of the "Parameters" Module
(' "'*""eMPLEENTATION PART... *)

CONST MAxStackSize = 42; PROCEDURE Push(stackElement: StackType)
TYPE StackType = INTEGER; ('a stack of 42 integers*) BOOLEA N:

* BEGIN

- 66 -

,0

I iSok -= The advantage of this approach is that the new
sn(acki := misx'kEeffi abstraction extends the language available to
INC(iSIlk); (0 th 95. the progammer. The new type can be used to
RETURN TRUE. declare variables in the same way as any builtin

RErU,.N pALSE . (*e .stack overflow) type like INTEGER or CHAR. Instances of these
END: (0 if variables are then passed as arguments to the

END Pusk StackManipulation procedures.

PROCEDURE Pop(VAR stackElernent: SackTYpe) The disadvantage of the approach is that the
:BOOLEAN; implementation details of the type are visible

IF iSck > I THEN and accessible to the users. As a result, a change

DEC(iStack); (*the sarne as iStack:=iStack-t *) in representation requires a recompilation by all
suckElement := stxck(iStack]; users of the module and may invalidate some

(* exit with a value *) programs. Thus, this design choice should be
ERE .N TRUE used with ext'eme care for any user interface

ELSE
RETURN FALSE (O error-sack underflow ") provided by an operating system. Another dis-

END; (* if -) advantage is the inability to share at runtime a
END Pop; single StackManipulation module for stacks of

PROCEDURE SetEmptyO; different type.

BEGIN A Stack Manipulation Example With An Exported Type
iStack:= 1;

END SetEmpty; DEFINITION MODULE StackManipulation:

(S S*S"SSSS*INITIALIZATION PART* ** * * ** *) FROM Parameters IMPORT

BEGIN (0 Const') MAxStackSize,
SetEmptyO; (*number of stack elementsm)

END Stack.Manipulation. (*Type,) StackType: (8 the element type ")

(0 This module implements a stack type together with the2.3 Module-based abstractions that manipulate it. To use this module, create

In this Section, we review some of the more a Parameters module that defines MAxStackSize. which

* common techniques for implementing a data is the number of elements desired, and StackType, which
can be of any type. *)

abstraction. System designers must choose TYPE Stack = RECORD
among these methods when designing the user iStack: [l..MAxStackSize.l];
interfaces. The previous StackManipulation stack: ARRAY [l..MAxStackSize] OF StackType;
example illustrates one of the choices. Notice END; ('Stack')

* that it is restricted to implementing exactly one
stack per use of the module. The other data PROCED"IE Psh(VAR stack:Stack: VAR element"
abstraction choices are to export a type, to (0 adds to top: returns FALSE if a push doesn't succeed ,)
export an opaque type, and to export an index. PROCEDURE Pop(VAR stack: Stack: VAR element:
The Stack.Manipulation module is used as an ScckType):BOOLE.N:

* example for each method. (* pops from top to "element":
returns FALSE if stack was empty ")

2.3.1 Exported type PROCEDURE SetEmpty(VAR stack: Stack):
(0 sets a stack to empty)

The first choice to implement an abstraction
is to export a type, such as "StackOfIntegers". END StacklManipulauon.

- 67 -

, S

0

Starap.DEALLOCATEsacik.
TS (Swkecigr));

232 Opaque type RETURN FALSE-

The second technique uses an opacu tye, I ENDT (e if.)
0 pointer. to iupuatz the stack absIrCt.O f) RETURN TUE.

When the user declares instances of the Stack END NewSsl

type, only uninitalized pointers are allocated. The advantage of this approach is the ability to
Thus, the implementation must provide a bind the size of a stack at runtime. In other words,
"NewStack' operator to allocate a stack of a the IMPLEMENTATION module must allocate

Sparticular size and a "FreeStack" operator to the space for each now stack. The disadvantage is

dealkccat stacks. again the inability to define a "class" of stacks that

A Stwk ManipuWaon Example With An Opaque Type would allow the component type to be specifed
arbitrarily.

DEFINITION:
2.3.3 Index• TESuck:

PROCEDURE NewStack(VAR stack: Stack: The last option uses the same DEFNITION
stackSize CARDINAL) :BOOLEAN: module as the previous example. But in this case,

(0 allocate stack, the opaque type is declared as a CARDINAL rather
renmu FALSE on swrge allocation error U) than a pointer. The IMPLEMENTATION module

PROCEDURE FreeStazck(VAR stwk:Stack):BOOLEAN; maintains an array of pointers to StackDescript
(deallocate stack.m

return FALSE on storage allocation error ") The array index, which is used as the argument to
the module's procedures, selects a descriptor from

IMPLEMENTATION: the array. The pointer from the descriptor is then

TYPE Stack = POINTER TO StckDescrptor used to manipulate a stack, just as was done with the

StackDescnptor = RECORD previous example. The array simply represents an

allocated: BOOLEAN;(set to TRUE by NewStack -) additional level of indirection. The advantage of
size: CARDINAL; (* set from stackSize ") the index technique is that it supports validity
iStack: [..MAxStackSize+, 1 checking. That is, it is easy to determine if a given
pStack: POINTER TO ARRAY [l..MAxStckSi e] index is really associated with a stack. Validity

END; (0 StackDescriptor) OF StackType; checking is more difficult when using pointers
since there is no way to force a user to initialize

PROCEDURE NewStack(VAR stack: Stack; stackSize: instances of the "Stack" type.
CARDINAL) : BOOLEAN; 3.0 Low.Level Programming Facilities

BEGIN
IF (stackSize=O) OR (stackSize>MAxStackSi=e) THEN In order to implement some systems in Modula-

RETURN FALSE; 2, it must be possible to deal with machine depend-

END: encies and it must be possible to bypass the
Storage.ALLOCATE(stiak. TSI(SckDescnptor); compiler's type checking. We discuss the latter
IF stack =I THEN requirement first. (These low-level operations

RETURN FALSE should be used carefully and only when absolutely

stack^.allocated:= TRUE; necessary.
scka.size := stacksize: 3.1 Eliminating type checking
stack^.iStack:= 1;
Storage.ALLOCATE(stackA pStack. stackSize); The first facility to breach Modula-2's type
IF stackA.pStack = NIL THEN

- 68 -

checking is type tansfer functions. A type ident- The ADDRESS and WORD types support the
fier can be used as a function to trfer a Parameter implementation of generic routines, particularly
to the type identifier's type. In most implementa- for I/0. Both types bypass the compiler's type
tions, no conversion is performed; type transfers checking. Modula-2 also Supports the convention
have their effect at compile time. that if a formal parameter is specified as ARRAY

OF WORD, then any variable, structured or un-
Type Transfer Examples suctured, can be supplied as an argument. The

CHAR(65) = 'A' ADR function can be used to initialize a pointer to
CARDINAL('A') = 65 the address of any data structure. As an example,
BITSET(3)+BITSET(5) = 7 the following routine takes an arbitrary array of

characters and prints it in slices of"unit" characters

3.2 The SYSTEM module at a time.

The second set of capabilities is provided by Print Slices of Stigs
module SYSTEM., which is "builtin" to the com- PROCEDURE printSlice(VAR s:ARRAY OF WORD:
piler. The definition of SYSTEM is implementa- size, widh:CARDINAL);
tion dependent. VAR

ij:CARDINAL;
Low-Level SYSTEM Facilities c:POINTER TO ARRAY (0..9999] OF CHAR:

BEGIN
DEFINITION MODULE SYSTEM: j :- 0:
(0 MPLEMENTATION DEPENDENT') c := ADR(s): (use a pointer to access 0)

FOR i := 0 TO size-I DO (' byic-wise for eah .)
TYPE InOuLWrite(CAfi]); ('char in the argument a)

ADDRESS=POINTER TO WORD: INC(j);
(*assignment compatible with pointer types') IF j >= width THEN

* WORD: (0 compatble with any simple type ') (* print "width" characters")
PROCEDURE ADR(x : (*'ANY TYPE*')) InOuLWriteLn; (* then start a new line S)

: ADDRESS; j:= 0:
('turns any variable reference into an ADDRESS type. ') END; (' if ")
PROCEDURE TSIZE(x: ('ANY TYPE IDENTIFIER')) END; (* for ')

: CARDINAL; IF j <> 0 THFN
* ('returns the number of address units that "x" occupies. InOuLWraLn;

It operates on a type's name. not on instances of the type. ') END: (0 end line. if necessary 0)

END SYSTEM. END printSlice:

The SIZE (builtin) and TSIZE functions allow Examples:

* the implementor to obtain machine specific infor- a:= 0123456789';
marion. For example, the size of an integer array pnntSlice(a. 10, 5); pnnts 01234 56789
big enough to store a 512-word disk sector can be printSlice(a. 10, 3): prints 012 345 678 9
obtained with the expression "512 DIV
TSIZE(INTEGER)". Since the size of a word in 3.3 Coroutines
our implementation is one machine unit, The final low-level facility that is discussed is
TSIZE(INTEGER) returns the value one. The use
of these functions improves the portability of an tion o r-levelopWrth usestem rac-
operating system. non tobuildhigher-leveloperating systemrounnes

to manipulate a program; for example, to assign a

69-0o

Propufl the CPU or to remove it from control of Anher.)
the CPU. The caroutine opeators am fudamntal Type
to any operating syson Co=Mua - POINTER TO RECORD

In a subroutim program stturCte, ther is a (0 s state of a cornne)

mamr/sWave relationship between a calling p e: ADDRESS c e)
Usals~rUfC('bare rmahine'spmtm omr)

g2n and its subroutine. Usually, a subroutine ha sp: ADDRESS;
one entry point and all local variables, except the ('bare machine's stack pointer)
formal parameters, are undefined at entry time. ('ANY OTHER DATA NEEDED TO

EXECUTE A Conoutme*)Corounnes, on the other hand, are programs that END RECORD;e

may call each other, but do not have a master/slave
relationship. On exit from a coroutine, its state (i.e. PROCEDURE InitCoroutine(p:PROC; stack.ADDRESS;

program counter, stack pointer) is saved in a van- stackSiz:CARD[NAL.
VAR (* OUT ")coroud Comudne):

able of type Coroutne; the next time the coroutine (* Initializes a coroutine record for procedun -p- so
is called, it resWnes execution at exactly the point that a "Transfer" to "p" will start it executing. *)
where it previously paused. All local variables and PROCEDURE Transfer(VAR from, to : Coroutine);
parameters retain their previous values. (0 Saves the hardware registen of the executing

procedure in "from" and then resets the registers to
The Coroutine type and the operators to ma- the values i "to", resultng in a tranfer of control. ')

nipulate coroutines are defined in the COROUT-
INE module, which again is machine dependent. END COROUTINE

In Modula-2, a coroutine is created by specify- The following example uses three coroutines to
ing a procedure, which represents the actions of the illustrate the concepts. The first coroutine,
coroutine, and a stack to hold the procedure activa- "getChar", is used as a filter to reduce all sequences
tion records, which represent the execution state of of three identical characters to the letter "J". Thus,
the procedure. Before a coroutine can be "re- "abbbbabbddd" as input would result in "aJbabbl"
sumed" for the first time (e.g. start execution), its as output. The second coroutine, "print", "resu-
state must be initialized by calling InitCoroutne. mes" the first to retrieve and print filtered charac-
The arguments to InitCorourine are a procedure as ters. Since the "Main" program is initialized with

* well as a stack base address and size. The stack size a stack, it is automatically a coroutine.
must be chosen in an application-dependent way;
in fact, some architectures do not even require this When the "getChar" routine pauses, it leaves the
information, filtered character in "resultChar". The program

stops when it reads a ".", followed by any different
The Transfer procedure implements the "res- character. Notice that the values of "ch" and "pre-

"ime" operation by saving the execution state of the viousChar" in "getChar" are saved across Transfer
current coroutine in a variable of type Coroutine operations.
and restoring the execution state of a second cor-
outine. A RETURN operation from a coroutine A Corouune Example

procedure is normally an error. MODULE Main:

The COROUTINE Module IMPORT InOut. COROUTIN-E;
VAR

DEFINITION MODULE COROUTINE: startCo, getCo. pnntCo• CORO L-rNECorouune:
('Routines to turn procedures into corouines and to stack1. Stick-: ARRAY (I..001 OF INTEGER:

transfer control of the CPU from one corouwie to (*stck space)
resultChar: CHAR:

- 70 -

(ave "Main": resume "prin- ')
ROCIMURBri~no; !IOuLWriteLn;

BEGIN InOut.WritSmngf"End Of Progum-);
REPEAT END Main.

COROUTE4TrferarintCO. geCo);
(Vum get' Oh coiouanh') 4.0 Compiling and Executing

IfOuLWriVntare1tCbr):
UNTIL resu I" -.- : (0 stop n ".' seCluGcc) The Modula-2 environment is composed of
COROUTINE.TransferprutcCo. sartCO): three units: two compilers and one runtime. TheEND print (' resume "main" program *) compilers perform all the needed code generation,and the runtime executes the code once it is se-

PROCEURE getCharO; lected.
VAR ch. previousChar : CHAR: 4.1

(* thew values are preserved"4. The Definition Compiler
BEGN) The first compiler is called "d" for definition

LOOP compiler. The definition compiler is the precursor
InOutRead(resultChar): to the second compiler. Its job is to decipherIF previousChar = resultCar THEN definition modules to produce the implementation

(* do two in a row match?) interface. Every file "d" receives must have the
InOut.Read(resultChar); suffix ".def". If this suffix is not supplied, the
IF previousChar = resuhChar THEN suffi er Ii s sf it suplled The

(* do three in a row match?") compiler will add it automatically. The
InOuLRead(previousChar); implementation's interface is stored in a file with
resultChar := 'r': the same filename as the source code except the

ELSE suffix is changed to ".SBL". An implementation
ch := resultChar: interface is required for each reference to an im-(0 no, return two. then proceed ported module. The compiler searches for any
resuItChar:= previousChar
COROUTINE.Transfer(getCo. printCo); needed. SB L files in the current directory. If it does

(0 resume "print" 0) not find one, it prompts the user to input the pathresuItChar:= previousChar: name that locates the needed file.
(* falls through to Transfer *)

previousChar:= ch; All definition modules must be compiled beforeEND; (0 if -) they are used (imported). Onceadefinition moduleELSE is compiled, it should not be compiled again unless
ch := previousChar: it is extended. When a definition module is

(' two characters are different') changed, first, compile all dependent definition
previousChar:= resuiLtChar
resultChar := ch; (0 set return value ") modules and then secondly, compile all dependent

END; (0 if-) implementation modules.
COROUTINE.Transfer(getCo. pnnCo);

(' resume "print" coroutine ") 4.2 The Program CompilerEND: (' loop'")
END gelChoop

The second compiler is called "c" for compile.This program takes the ASCII file of a program orBEGIN implementanon module and forms it into the object
COROUTINE.InitCorouneegeEChar. stackt, code that the runtime uses. Files sent to the

SLZE(stack 1), getCo); compiler require the 'mod" suffix in order for the
COROUTINE.InitCoroutine (pnnt, stack2,

SIZE(stack2), printCo); compiler to recognize it as Modula-2 source code.* COROUTINE.Transfer(stanCo, pnntCo); If the suffix is omitted, the compiler will append it

- 71 -

0

automatically. Also when the suffix is omitted, any Now, Pulmeim can be comp1ed with ,fe definina.
error messages generated during CompLiion will ompiler.

be immediately prind. Object files have the se Type in:
name as the Wmc txt with the suffix swiwhed to d Puumetemdef
".OBJr'. of

d l*rameers

Error messages generated by either compiler
can always be found in the file called filename.LST The computer will respond with:
where filename is the name of the file that the
compiler attempted to tanslate. When errors Pwrameters.def
occr, the compiler will try to continue compila- Modula-2

ton beyond the error. This is so that all errors can in>

be discovered before the user attempts to compile

again.)Wen any errors occur during compilation, Everything is now prepared for StackManipulauon's defini.
neither object code nor implementation interfaces Lion module to be compiled.
will be generated. Type in:

4.3 The Runtime d StackManipulaton.def
or

To execute any compiled program the runtime, d StackManipulation
"x", is called upon. Only program modules created
by the program compiler can be run. The runtime The computer will respond with:
can take no arguments; the filename must be sup- StackManipulauion.def
plied only when the runtime requests it. The Modula-2
runtime will ask whether the user wants to use the in>
trace option. If the user responds "y" then the Parameters: Parameters.SBL
runtime will display each line of object code in
hexadecimal and octal. Unless the user under- + StackMmpulaion.SBL.

stands the internal object code, this option ought The last action the user must perform is compiling the
not be used. When the runtimne asks for the implementation module. The proram compiler is used for
filename two options can be used. Either the full this.

* name can be given, or the name can be given
without the suffix following the period. Type in:c S cackManipulatuon.mod

Example: or
c StackManipulation

Consider the stack manipulation example as it was first
* given. A carriage return follows every command. The computer will respond:

First, the Parameters debizuion module must be created: S ackManipulanon, rod

DEFINITION MODULE Parameters;
in>

CONST Stack.Manipulation: Sack anapulation.SBL
T MSackSize = 10; Parameters: Parameters.S BL

TYPE
StackType = INTEGER. (I something smple) + SuckMaipulatonRFC....

END Parameters. + SackManipulauon.OBJ 113

72-

I S

lsfirt f ap listed eallm thfilea the module wishe" donsoftheACM I5, 12 (Dec. 1972) 1053-1058.
Tit Tis Im dlip ilid are th new files * cmpildr

cz d mdft si of ibm file. if aptiap' e"

Suk, ipi m is now rcey 0 be ued in any
IpMl *6 m' g gMM. if te am wiwwe to change eifte
SMkTypq at MAXzackSize, pvmwets mut be edited
and All three files must be compiled again.

Whenever a program requests the use of an
imported module, the rundme must bring that
module into memory. The first time the runtime
encounters a reference to an imported module, the
rundme will fetch its object code into memory and
execute its initialization statements if it has any.
This is called dynamic linking. The object code
must be located in the current directory or else the
runtime will not be able to find it. The initialization
sequence is only performed once. 1fmany modules
import the same module, that module's initializa-
tion code will only be performed when it is first
read in.

If the runtime encounters an error, a message
will be printed. Since all runtime errors are fatal to
the program, execution will immediately stop.
These are all the possible error messages that the

* runtime can issue:

normal exit
HALT statement
CASE error
stack overflow

* heap overflow
missing RETURN in a function
address error
REAL overflow
REAL underflow
bad operand

* CARDINAL overflow
INTEGER overflow
subrange or subscript error
division by zero
illegal instrucuon
breakpoint

REFERENCES

(] Parnas. D.L. On the criteria to be used in de-
composing systems into modules. Communica-

- 73 -

0

Modula-2 Syntax Diagrams

Key
*Literal text: interpret characters

(TEXI')as shown.

[DeDefinition block: definition is
Defniion on found elsewhere in diagrams.

Iirt1Repeat block: choose any interior
__________objects as often as needed (incl. 0).

I[~II'IPick block: choose only one.

Compilation Unit

De fin it ion

Module

Defintion Module

E IN I I0N M ,E

Declaration
Block

Prceur

-74 -

Program Module

M BOckL Identifier

Importt

Export

*Declaration Block

r --- ~

Constant] Typ Varible
* j~jDecla ~raion Declration

L---

-75-

Block
r --- -- - -- - - -- -----

1 IDeclarationl ProcedureL.__Z. ModuleI

-1Block Declaratio n Declaration -
I..---- ---

Procedure Heading

* ROCEDE ,Identi...er

V AR Identifier ARRAY OF Qualified

00

Qualified

Idetifer IDProcedure
Declaration

0Module Declaration Procedure
Heading

* Exp~~ODUL loc Idnient e ~

-76 -

Constant Declaration

r -- ------ - ----------------- - -- -- -- ----

C =OIST dentifier Expression

Type Declaration

r----------------------------

TYE Identifi er Iyp

*~~~~ I---

Variable Declaration.

S It

-------------- -- -- -- -- -- ----

Type

Qualified Enumeration S rne Array

Idenifier [Jp Type Type

Recor Set Pointer Procedure
TypeType Type

Enumeration Type

-77 -

Subrange Type

Array Type

Identifieri

Enmeation

Type

*Record Type Field Block

Varin

Field List

-78-

0

Variant Field List

OF ~Qualified / Fng

CASE Idenifier iJ r

0!

EQu Cas Field
Expression Blockr

0 _Field

i!~ 79, S-

Blc

Statement

Aignm ent prcdure if Case

Sttment tatm ritjatmen Satmn

ca ti
Statement I vcto Statement S tateret

Assignment Statement

DesignatrExrsso
0i

If Statement

•Expression 11HE Statement

E ndin g

Else Ending

E ELSE Statemen

00

00

Case. Statement

SF

LElse
Ending ED

Case Expression

While Statement

Repeat Statement

-81-

For Statement

iO fdcntifie Expression TO0 Expression

Con stant

Expression D 0

Statement

E EN D

Loop Statement Exit Statement

WihStatement Rtr ttmn

= WITH Designator DO0

Procedure Invocation

00

-82 -

Expression

_ Simple [. _Relationa 1' _ 'S implie I

Simple Expression

+

Faactor

* Factor

Coant SeLPoedrExpression Invocation

Expression) Factor

Constant Expression

Simple Relational Simple i

Constant Operator Constan .t
SExpression Expression

- 83 -

0 I I I II I I I

Simple Constant Expression

Constant Factor

F Qualified FW
IIdentifier It era

Consant OTCostn
O dExpression TFactor

Relational Operator Operator

*D 0000 GO®(E

Precedence
highest to lowest

* NOT, , +, - logical not,
unary plus, minus

N, , MOD multiplication
DIV, AND, & operators

+, -, OR addition
operators

0=, #, <, < relational
<- >, >=, IN operators

- 84 -

0

sg Literl

Sot Expression

0

Designator

--- IdntiieJ-- Expression I t

C H Idnife

Qulfe IetfrIdn i

Identifierer iLetr

L 85

0 Constant

Litealj ~Liral

*Numeric Literal

Real Liteal

String Liteia

0
i i

e a e i a

0

DISTRIBUTION LIST

Copy No.

1 - 50 U.S. Army Research Office
P.O. Box 12211

4300 S. Miami Boulevard
Research Triangle Park, NC 27709-2211

51 Dr. David W. Hislop

Electronics Division
U.S. Army Research Office
P.O. Box 12211

4300 S. Miami Boulevard
Research Triangle Park, NC 27709-2211

52 - 53 Dr. R. P. Cook, CS

54 Dr. A. K. Jones, CS

55 - 56 Ms. E. H. Pancake, Clark Hall

57 SEAS Publications Files

* Office of Naval Research Resident

Representative

818 Connecticut Ave., N.W.

Eighth Floor

Washington, DC 20006

Attention: Mr. Michael McCracken

Administrative Contracting Officer

00

2157:ald:DW2I3R

0

UNIVERSITY OF VIRGINIA
School of Engineering and Applied Science

The University of Virginia's School of Engineering and Applied Science has an undergraduate
enrollment of approximately 1,500 students with a graduate enrollment of approximately 560. There
are 150 faculty members, a majority of whom conduct research in addition to teaching.

Research is a vital part of the educational program and interests parallel academic specialties.
These range from the classical engineering disciplines of Chemical, Civil, Electrical, and Mechanical
and Aerospace to newer, more specialized fields of Biomedical Engineering, Systems Engineering,
Materials Science, Nuclear Engineering and Engineering Physics, Applied Mathematics and Computer
Science. Within thp.se disciplines there are well equipped laboratories for conducting highly specialized
research. All departments offer the doctorate; Biomedical and Materials Science grant only graduate
degrees. In addition, courses in the humanities are offered within the School.

The University of Virginia (which includes approximately 2,000 faculty and a total of full-time
student enrollment of about 16,400), also offers professional degrees under the schools of Architecture,
Law, Medicine, Nursing, Commerce, Business Administration, and Education. In addition, the College
of Arts and Sciences houses departments of Mathematics, Physics, Chemistry and others relevant
to the engineering research program. The School of Engineering and Applied Science is an integral
part of this University community which provides opportunities for interdisciplinary work in pursuit
of the basic goals of education, research, and public service.

0

